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Abstract 

 
The Gross–Pitaevskii equation is solved using an approach 

developed for the solution of the Bogoliubov–de Gennes equations for type II 
superconductivity.  The solution is compared with others in the literature and 
is shown to be easily adapted to the study of an isolated vortex recently 
discovered in Bose-Einstein Condensation in trapped gases. 
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1.0 Introduction 

There has been a recent surge in interest in Bose–Einstein Condensation (BEC) after it was 
observed in a remarkable series of experiments on vapors of Rubidium and Sodium in which the atoms 
were confined in magnetic traps and cooled down to extremely low temperatures, of the order of 
Microkelvins [1].  The interesting feature of BEC in trapped gases is that it shows up in coordinate space.  
This is different from the BEC observed in superfluid Helium that is observed in momentum space.  Thus a 
relatively new phenomenon is opened up to experimental and theoretical probes.  Also vortex formation 
has been observed in a stirred Bose–Einstein Condensate [2]. This is analogous to vortex formation in 
superfluid Helium and type II superconductors [3].  Thus the theoretical understanding of the properties of 
BEC in trapped gases must necessarily include that of its vortex state. 
 An important equation used in the study of BEC is the Gross-Pitaevskii (GP) equation ([1] and 
references therein) which describes the condensate wavefunction.  This equation is derived from mean field 
theory and has the form of a nonlinear Schrödinger equation, the nonlinearity coming from the mean – field 
term, proportional to the particle density.  The nonlinearity also makes it difficult to solve analytically and 
hence a numerical approach is necessary.   This work is motivated by the necessity to modify the GP 
equation so as to incorporate a vortex and show how it may be solved numerically. 
 The layout of the paper is as follows.  The next section describes the GP equation. Section III 
develops a method to introduce the vortex into the equation and a numerical scheme to solve it.  The case 
of the ground state is actually solved.  The last section discusses the results and conclusion. 
 
2.0 The Gross-Pitaevskii equation 
 A trapped gas can be described by N interacting bosons, which are trapped by an external potential 
Vext (r).  The many – body Hamiltonian in second quantized form is written as 
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where Ψ(r ) and Ψ†(r) are the boson field operators that annihilate and create a particle at the position r, 
respectively  and V(r - r´) is the two–body interatomic potential.  The time evolution of the field operator 
Ψ(r , t) can be determined using the Heisenberg equation of motion with the many–body Hamiltonian (2.1): 
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For the case in hand the interaction can be represented by the dilute gas approximation 
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where g is the coupling constant which measures the strength of the interaction.  The use of (2.3) reduces 
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and also makes possible the use of the mean – field approximation that replaces the operator Ψ(r,t) by its 
mean– field value Φ(r,t) ≡ < Ψ(r,t) >.Φ(r,t) is a complex function called the wave function of the 
condensate, its modulus fixes the condensate density through n(r ,t) = Φ(r,t)2.  Making this replacement 
(2.4) now becomes 
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known as the Gross -Pitaevskii equation.  The wave function can be written as  
η/tie)r()t,r( εϕΦ −=      (2.6) 

where ε is the chemical potential and φ is a function and normalized to the total number of particles, 

∫ = Nrd
2ϕ .  Then the GP equation becomes  
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This has the form of a nonlinear Schrödinger equation, the nonlinearity coming from the mean – field term 
proportional to the particle density n(r) = φ(r,t)2.  In the absence of interactions (g = 0) this equation 
reduces to the normal Schrödinger equation for a single particle.  The trapping potential is usually 
represented by the Harmonic potential: 
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ωho is the geometric average of the oscillator frequencies 
ωho = (ωx ωy ωz)

1/3      (2.9) 
It also defines the harmonic oscillator length: 
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Measuring length in terms of aho , energy in terms of ћωho and density in terms of aho
-3 the expression (2.7) 

becomes 
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with all quantities in the equation now dimensionless and the normalization condition now satisfying 

∫ =1
2ϕrd .   It now remains to describe a vortex structure.  This can be done using the description of 

de Gennes [4,5] by writing the wave function as  
zziki ee)r()r( µθϕϕ =    (2.12) 

describing a cylindrical vortex structure with µ the orbital angular momentum quantum number, taking on 
integral values 0, ±1, ±2, ±3,…. and kz the z–component of momentum.  Equation (2.11) is now written as 
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 The equation depends on the square of µ and hence we can confine ourselves to zero and positive values of 
µ.  The equation with µ = 0 is interpreted as the equation of the ground state (in the absence of a vortex).  
The solution with µ > 0 now describes the vortex structure. 
 
3.0 Numerical scheme 

We follow closely a scheme already developed [6].  Equation (2.13) will be solved for µ = 0 and kz 
2-2ε ≈ 0: 
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This equation is a second order nonlinear ordinary differential equation (ODE).  To solve it, an initial 
assumption for the wave function is required.  It has already been mentioned that in the absence of 
interactions the GP equation reduces to the ordinary Schrödinger equation.  Since the external potential is 
harmonic, the initial assumption for the wave function is the ground–state wave function of the harmonic 
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oscillator which is Gaussian:   22 /r
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 (3.2) 
A is a constant.  The equation is then solved by iteration until the solution converges.  The term first order 
in derivative can be removed via a change in variable 
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which can be solved using known techniques [7]. 
 
 
 
4.0 Results, discussion and conclusion 

Calculations were carried out for g = -0.1, -0.3, -0.5 (attractive interaction) and g = 1, 10, 100 
(repulsive interaction).  In general the solutions converged after approximately ten iterations.  The results 
are shown in Figures 1 and 2.  Figure 1 shows how the density of the particles peak as the strength of the 
attractive interaction increases while Figure 2 shows how they spread out as the strength of the repulsion 
increases, similar to what has already been obtained ([1] and references therein).  What is interesting about 
this approach is that a vortex structure can now be introduced by using a non – zero value for µ and the 
corresponding harmonic oscillator wave function as the initial assumption.   Work is in progress on this and 
shall be reported elsewhere. 

In conclusion, a numerical scheme has been developed to solve the Gross–Pitaevskii equation.  
Also a method, which allows the study of vortex formation, has been shown. 

 

 

F igure 1 . C ond ensate w ave fun ction  fo r a ttrac tive in teraction  
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F i g u re  2 .  C o n d e n s a te  w a v e  f u n c t i o n  f o r  r e p u ls i v e  i nte ra c t i o n. 
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