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Abstract

The Gross—Pitaevskii equation is solved using anpeagach
developed for the solution of the Bogoliubov—-de @en equations for type Il
superconductivity. The solution is compared witthers in the literature and
is shown to be easily adapted to the study of amlated vortex recently
discovered in Bose-Einstein Condensation in trappgses

pp9-12
1.0 Introduction

There has been a recent surge in interest in Bassteih Condensation (BEC) after it was
observed in a remarkable series of experimentsamorg of Rubidium and Sodium in which the atoms
were confined in magnetic traps and cooled downextremely low temperatures, of the order of
Microkelvins [1]. The interesting feature of BER trapped gases is that it shows ugdordinatespace.
This is different from the BEC observed in supeditdelium that is observed momentunspace. Thus a
relatively new phenomenon is opened up to expetiahemd theoretical probes. Also vortex formation
has been observed in a stirred Bose-Einstein Ceatlerj2]. This is analogous to vortex formation in
superfluid Helium and type Il superconductors [3hus the theoretical understanding of the propg i
BEC in trapped gases must necessarily includeothitd vortex state.

An important equation used in the study of BEGhis Gross-Pitaevskii (GP) equation ([1] and
references therein) which describes the condemsatefunction. This equation is derived from meiaidf
theory and has the form of a nonlinear Schrodiegesation, the nonlinearity coming from the meaieldf
term, proportional to the particle density. Thelireearity also makes it difficult to solve anabally and
hence a numerical approach is necessary. Thik igomotivated by the necessity to modify the GP
equation so as to incorporate a vortex and showihmay be solved numerically.

The layout of the paper is as follows. The nexdtisn describes the GP equation. Section Il
develops a method to introduce the vortex intoeteation and a numerical scheme to solve it. Hsec
of the ground state is actually solved. The lastisn discusses the results and conclusion.

2.0 The Gross-Pitaevskii equation
A trapped gas can be described by N interactirsgpih® which are trapped by an external potential
Vext (F). The many — body Hamiltonian in second quantipedh is written as

H=[dr'(r)[ —g—ranZ +V (r)] +1[drdr' @ '(r )@ (r' W(r=r" W(r")¥(r), (2.1)

where¥(r) and¥'(r) are the boson field operators that annihilate emedte a particle at the position
respectively and/(r - r’) is thetwo—body interatomic potential. The time evolutiointhe field operator
¥(r, t) can be determined using the Heisenberg equafimnotion with the many-body Hamiltonian (2.1):

m%%r.w:[w,m:[—%D“vmwJdr'wr'.tMr'—rMrtt)]%nt) (2.2)

For the case in hand the interaction can be repteddy the dilute gas approximation

V(r-r)=gdr-r’), (2.3)
whereg is the coupling constant which measures the dtineofgthe interaction. The use of (2.3) reduces
(2.2) to the form in%lﬂ( rE)=[—LO2+V (r)+g@W(rt)¥rt)¥(rt) (2.4)
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and also makes possible the use of the mean —dmdoximation that replaces the operakdr,t) by its
mean— field valued(r,t) = < ¥(r,t) >.@(r,t) is a complex function called the wave function tbé
condensate, its modulus fixes the condensate giehsitugh nf,t) = Ob(r,t)[F. Making this replacement
(2.4) now becomes

No-0(rt) = [~£07 +V,(r)+ go(ra) 191 1), (2.5)

known as the Gross -Pitaevskii equation. The viametion can be written as

@D(rt)=¢(rpe™n (2.6)
wheree¢ is the chemical potential angis a function and normalized to the total numbgparticles,
jdr|¢|2 =N . Then the GP equation becomes

[ =507 +V, (1) +gd(r)14(r) = eg(r). (2.7)
This has the form of a nonlinear Schrddinger equatihe nonlinearity coming from the mean — fiedd
proportional to the particle densityr) = /(r,t)(F. In the absence of interactiorgs £ 0) this equation
reduces to the normal Schrddinger equation forngleiparticle. The trapping potential is usually
represented by the Harmonic potential:

Vext(r):%mwhorz’ (28)
no IS the geometric average of the oscillator freqien
Oho= ((‘)x Wy @1)1/3 (29)
It also defines the harmonic oscillator length:
1/2
a, =( d J (2.10)
maw,,

Measuring length in terms ofa energy in terms dfw;,, and density in terms @,;° the expression (2.7)
becomes

[-O%+ 12+ glg(r)[ 16(r)=2¢4(r) (2.11)
with all quantities in the equation now dimensi@sleand the normalization condition now satisfying
jdr|¢|2 =1. It now remains to describe a vortex structufdis can be done using the description of
de Gennes [4,5] by writing the wave function as

#(r)=¢(re"e (2.12)
describing a cylindrical vortex structure wiihthe orbital angular momentum quantum number, takim
integral values 0, £1, +2, +3,.... akdthez—component of momentum. Equation (2.11) is nowtemias
& _1d ¢ .,
—— ———+—+K +r°+go(r r)=2edr 2.13
[drzrdrrzls gp(r ) 4(r)=2e¢(r) (2.13)
The equation depends on the squane afid hence we can confine ourselves to zero aritiyeoglues of
u. The equation witln = 0 is interpreted as the equation of the grouateqin the absence of a vortex).
The solution withu > 0 now describes the vortex structure.

3.0 Numerical scheme

We follow closely a scheme already developed Ejuation (2.13) will be solved far= 0 andk,
22¢=0:

2
(-2 s g (1) =0 (3.1)
dr® rdr

This equation is a second order nonlinear ordirdifferential equation (ODE). To solve it, an iaiti
assumption for the wave function is required. dshalready been mentioned that in the absence of
interactions the GP equation reduces to the ordiBahrédinger equation. Since the external paieigi
harmonic, the initial assumption for the wave fimetis the ground—state wave function of the harimon
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oscillator which is Gaussian: 9. (r)= Aer’'?

(3.2)
Ais a constant. The equation is then solved énafton until the solution converges. The terrstfarder
in derivative can be removed via a change in végiab

Ar)= fjri’ (3.3)
equation. (3.1) becomes
O g Mgy, (3.4)
dr 4r r

which can be solved using known techniques [7].

4.0 Results, discussion and conclusion

Calculations were carried out fgr= -0.1, -0.3, -0.5 (attractive interaction) agd= 1, 10, 100
(repulsive interaction). In general the soluti@esiverged after approximately ten iterations. Tdmults
are shown in Figures 1 and 2. Figure 1 shows lmndensity of the particles peak as the strengtheof
attractive interaction increases while Figure 2vehdow they spread out as the strength of the sepul
increases, similar to what has already been oldgjii¢ and references therein). What is intergstibout
this approach is that a vortex structure can novinbveduced by using a non — zero value ffioand the
corresponding harmonic oscillator wave functionresinitial assumption. Work is in progress ois #nd
shall be reported elsewhere.

In conclusion, a numerical scheme has been dewtltpeaolve the Gross—Pitaevskii equation.
Also a method, which allows the study of vortexnfiation, has been shown.
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Figure 1. Condensate wave function for attractiméeraction
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Figure 2. Condensate wave function for repulsiveenaction
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