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Abstract 
 

A further processing of windowing in the computation of 
the quantum propagator, ks, for a simple harmonic oscillator is 
performed with variation in space; instead of time as in Ituen 
(2003b).  All the four window functions are analysed as before, 
namely, random, Wr, exponential, We, gaussian, Wg and velocity, 
Wv window functions. Again the values of the propagator as Kwr, 
Kwe, Kwg, Kwv, in space, compare reasonably with Ks and hence Kcl.  
The quantities σσσσr, σσσσe, σσσσg, σσσσv are the respective slight relative 
deviations measured with variation in space as expected in this 
case. 
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1.0 Introduction 

The basis of windowing is the same as given in [7, 8].  It is based on [5]’s definition of propagator 
as a quantum-mechanical pulse spreading in a step-wise manner and this satisfies its composition property; 
another form of superposition principle.  The idea was pioneered by [3] by proving that those paths with 
actions very different from the classical action really do not contribute.  Some paths cancel out owing to 
large phase difference with the classical path whereas only the neighbouring paths contribute in phase and 

constructively interfere; since constructive or destructive interference depends on the phases 
η

jR
 

 Again using Fj as a measure of the contribution of action Rj to the expected value of the 
propagator, K, [1] had shown that 
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=  Rmin being the classical action, and a is a set of n constants such that the 

Hamiltonian of the system can be expressed as H(q, a).  The deductions from equation (1.1) consolidate the 
fact that Rmin is the most important action while other actions decrease in influence as Rj departs from Rmin. 
 The foregoing discussions are supportive of the fact that one can “filter off” some of the paths 
with no significant error and this is the doctrine of windowing.   
 The idea of Young’s double slit interference experiment in Optics can be used as a further 
illustration by considering [3] paths as “interfering alternatives” to a moving particle from an initial point to 
the final.  Those paths are a counterpart of the two paths S1P and S2P of Young’s experiment. 
     S2P  = S1P + ∆ = r + d sin θ 
Let r be the displacement in the direction of the wave ψ (P) then 
     ψ = eikr + eik(r + dsinθ)   (1.2) 
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where k is the propagation constant or wave number (vector).  With non-uniform weights W1 and W2, 
equation (1.2) becomes    ψ = W1e

ikr + W2e
ik(r+dsinθ)   (1.3) 

By taking the magnitude of each, the interference term in the latter is W1W2e
ikdsinθ instead of eikdsinθ 

in the former.  By introducing the weights the constructive or destructive interference becomes modified; 
thus amplifying the window effects to facilitate the study.  In the work the weights represent window 
functions.  

  
 
 

Another aspect of window effects is in the model which the same as in the listed previous works.  
The picture was originally given by [12] to be a limited region of contributing paths just like a particular 
rectangle.  For the illustrative results required in this work, we had to stipulate the number of time slices, Nt 
as well as that of space Nq, say.  These numbers determine the number of paths involved as 

    ( ) 1−= tNNqpathsofNumber     (1.4) 

In addition, we need to observe a further precaution namely that of avoiding any vertical or horizontal 
motion because    0 < (q1 – q3)/(t1 – t3) < c    (1.5) 
is a very important requirement physically; c being the velocity of light.  Figure 1.1 resembles an infinite 
potential well with the paths bouncing away from the walls.  By concentrating only on such prescribed set-
up we have cut-off several paths.   
    Time 
 
 
 
 
 

 
 
  
 

 
Figure 1.1: A set-up like an infinite potential well with paths bouncing away from the walls. 

Remark: 
 Generally, anyone embarking on this direct path summation is confronted with devising a means 
of handling infinite number of quantum paths.  So far, many have resorted to Monte Carlo method 
especially for the case of imaginary time, which is closer to a Wiener process.  This method involves 
random sampling of the paths; which is also a way of leaving out some paths.  Actually, only very few have 
ventured into the real time case namely [10, 11] using respectively numerical matrix multiplication and 
matirx diagonalisation methods.  In such methods too, there is always the cutting-off of some “wild” paths 
[6]. 
 
2.0 The propagator of a simple harmonic oscillator 

It is important to remember that the Lagrangian of this system as 
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[9] and the corresponding propagator has been known to be: 
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as in [3].  Recall that Figures 2.2 (a and b) show the comparison between Kcl, analytical propagator, and Ks, 
computed propagator.  As already pointed out in [6], [7], [8] the result is in agreement with [3], [11]. 
 
3.0 Window effects on quantum propagators 

Space qo 

q 
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The main point distinction between this work and [8] is that computation is done with variation in 
space throughout. So, using the usual model with N = 3277, we repeat the whole process as in [8], namely; 

The quantum propagator, K, for N, is obtained from the original expression 
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We then compare the results to that of using the window functions to weight each term in the expression  
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Note that the choice of Nw < N for further results, is to make Wj = 0 for some paths since there are infinite 
number of them.  This is again an enhancement to the desired window effects, where M is a normalization 
factor given by 
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The results for each of the window functions involve the display of the uniformly weighted propagator, Ks, 
and the corresponding weighted or non-uniform propagator, Kw versus time as in Figures 3.1 - 3.4.  The 
relative deviation, σ, defined between Ks (or Ktheoretical ) and Kw are calculated as. 
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This is contained in Table 1. 
 
4.0 Results 
4.1 Random window function, Wr 
 It is so called because it is randomly generated and it windows out paths at random.  Besides, 
unlike other cases, the weights were generated as complex numbers.  The results are shown in Figures 3.1.  
Kwr is the non-uniform propagator to compare with Ks.  For this window function Wr, the available 
facilities for computations did not permit weighting all the 3277 paths.  The reason is that Wr being 
complex has two sets of values.  In this case the value of Nw is restricted to Nw < 3000. 
4.2 Exponential window function, We 
 This is a type of Gibb’s weight and is expressed as 
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Where Rmin is the classical action for the system.  By the sketch shown in Figure 4.1 the aim is to eliminate 
paths with large action.  Such paths may be termed as wild paths referred to by [3]. 
 The results are presented in Figures 3.2.  Kwr represents the non-uniform propagator.  There is no 
restraint on the choice of Nw in this case.  So we choose Nw = 3277, 500, 5. 
 

We = exp - (Rj – Rmin)/Rmin 
 
 
 

Rj – Rmin)/Rmin 

 
Figure 4.1: Exponential window function 

4.3 Gaussian window function, Wg 
This is expressed as 
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i.e. Gaussian on the action itself.  Wg, like We, is meant to enhance paths with actions close to Rmin at the 
expense of the wild paths.  In addition, the effect of Wg should be more pronounced than that of We owing 
to the sketch shown in Figure.4.3.  Figure 3.3 show the corresponding results. The non-uniform propagator 
is Kwg.   
 

Wg = exp – [(Rj – Rmin)/Rmin]
2 

 

(Rj – Rmin)/Rmin 

Figure 4.2: Guassian window function 

 

5.0 Velocity window function, Wv 
We chose ε, such that the speed, vj is given by 
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(c is the velocity of light).  This implies boundedness as required in fundamental physics.  Then the 
window  
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i.e. for any path, we calculate ∑
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with t = lk /v on condition vj = lk /t < vc where vc is a chosen values.  Then  
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otherwise when condition is not met Rk = 0     (5.5) 

Nw is determined by vc given by 
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I  =  2,4,5 and the possible values are Nw = 2457, 1638, 819 as seen in Figure 3.5 
 

6.0 Discussion 
  As in [8], Table 1 contains computed values of the relative deviation σ of the 4 window functions 
for the various systems with different Nw. σ provides reasonable quantitative details about the measure of 
suitability of the window functions.  Besides, it gives more elaborate information about the effects of the 
window functions, which is not obvious from the waveforms of Ks and Kw; as the two appear to coincide 
almost completely when plotted on the same page.    
 

Table 1: Displaying σ of the four window functions for Simple  
Harmonic Oscillator vs. Space 

 
Nw σσσσr σσσσe σσσσg σσσσv 

2457 0.0326 0.0241 0.2718 0.0920 
1638 0.0775 0.0685 0.2815 0.1920 
819 0.0009 0.0022 0.0021 0.0021 

Since the values of σr, σe, σg, σv are small throughout, it again confirms the closeness of Ks and Kw. This is 
in consistent with [8]. 
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7.0 Conclusion 
 The work further consolidates the findings of its counterpart work [8].  The constant smallness of 
the values of σ is indicative of the suitability of the window functions. 
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