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Abstract

A further processing of windowing in the computation of
the quantum propagator, ks, for a simple harmonic oscillator is
performed with variation in space; instead of time as in ltuen
(2003b). All the four window functions are analysed as before,
namely, random, W,, exponential, W,, gaussian, Wy and velocity,
W, window functions. Again the values of the propagator as Kw;,
Kwe, Kwg, Kw,, in space, compare reasonably with K¢ and hence Kgy.
The quantities ¢, o, g & are the respective dlight relative
deviations measured with variation in space as expected in this
case.
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1.0 Introduction

The basis of windowing is the same as given ir8]7,It is based on [5]'s definition of propagator
as a quantum-mechanical pulse spreading in a sepmanner and this satisfies its composition pitgpe
another form of superposition principle. The ide@s pioneered by [3] by proving that those pathth wi
actions very different from the classical actioaliedo not contribute. Some paths cancel out guwm
large phase difference with the classical path eé&ionly the neighbouring paths contribute in plaase

R,
constructively interfere; since constructive ortdsstive interference depends on the phasés

n
Again using Fas a measure of the contribution of actiontd? the expected value of the
propagatorK, [1] had shown that

_n
2+1

(F)= % (L1)
)

Rnin being the classical action, and a is a set of nstamts such that the

(Ri - Ry, )

Hamiltonian of the system can be expressed(gsa). The deductions from equation (1.1) consolida&e
fact thatRy» is the most important action while other actioesréase in influence & departs fronRmn.

The foregoing discussions are supportive of tlot flaat one can “filter off” some of the paths
with no significant error and this is the doctrfevindowing.

The idea of Young's double slit interference exmpent in Optics can be used as a further
illustration by considering [3] paths as “interfegialternatives” to a moving particle from an lifpoint to
the final. Those paths are a counterpart of tlregaths $° and $P of Young’s experiment.

SP =SSP+ A=r+dsné@
Letr be the displacement in the direction of the wév@) then
W= gk 4 dkr+ dsng) (1.2)

where r, =
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wherek is the propagation constant or wave number (victd¥ith non-uniform weightdV, and W,
equation (1.2) becomes W= Wi + Wk asing (1.3)

By taking the magnitude of each, the interfereremtin the latter iV, W,e " instead of "’
in the former. By introducing the weights the domstive or destructive interference becomes medifi
thus amplifying the window effects to facilitateettstudy. In the work the weights represent window
functions.

Another aspect of window effects is in the modelchtthe same as in the listed previous works.
The picture was originally given by [12] to be milied region of contributing paths just like a partar
rectangle. For the illustrative results requinedhis work, we had to stipulate the number of talees,N;
as well as that of spadg, say. These numbers determine the number of patblved as

Number of paths=(Ng)"“™ (1.4)
In addition, we need to observe a further precautiamely that of avoiding any vertical or horizdnta
motion because O<(gg)/(ti—t)<c (1.5)

is a very important requirement physically; ¢ bethg velocity of light. Figure 1.1 resembles afiniite
potential well with the paths bouncing away frora thalls. By concentrating only on such prescribetd
up we have cut-off several paths.

Time
A q
/
%/
% » Space

Figure 1.1: A set-up like an infinite potential Weith paths bouncing away from the walls.
Remark:

Generally, anyone embarking on this direct patnraation is confronted with devising a means
of handling infinite number of quantum paths. %o, fmany have resorted to Monte Carlo method
especially for the case of imaginary time, whichcisser to a Wiener process. This method involves
random sampling of the paths; which is also a widgaving out some paths. Actually, only very feawve
ventured into the real time case namely [10, 11ljgusespectively numerical matrix multiplicationdan
matirx diagonalisation methods. In such methods tioere is always the cutting-off of some “wildiths

[6].

2.0 The propagator of a simple harmonic oscillator
It is important to remember that the Lagrangiathaf system as

L=2(& ~aia) (2.1)

[9] and the corresponding propagator has been known to be:

ma, 2 ime, . Iy
Kcl _|:27Tir]Sina)0(t—t0):| eXp{Zr]sina)o(t—to){(q +q0)COSC<)0(t to) quo} (2-2)

as in [3]. Recall that Figures 2.2 (a and b) skimevcomparison between,Kanalytical propagator, and,K
computed propagator. As already pointed out in[[d] [8] the result is in agreement with [3], [11

3.0 Window effects on quantum propagators
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The main point distinction between this work anfigdthat computation is done with variation in
space throughout. So, using the usual model Mith3277, we repeat the whole process as in [8].ehgm

The quantum propagator, K, for N, is obtained fithin original expression
ner ©XPIR (g, 1)

K, (.a,r)= >, .

We then compare the results to that of using tmelowv functions to weight each term in the expressio

w |W. expiR (q,q,,t)/

Kw(q,qo,t)=NZl &P ,'qu %) r]J; N, <N 3.2)
j=1

Note that the choice of N< N for further results, is to make;W 0 for some paths since there are infinite
number of them. This is again an enhancementetadsired window effects, where M is a normalizatio
factor given by

(3.1)

w, | (3.3)

The results for each of the window functions ineotlie display of the uniformly weighted propagatGy,
and the corresponding weighted or non-uniform pgapar, K, versus time as in Figures 3.1 - 3.4. The
relative deviationg, defined between Kor Kyeoreticar) @aNd K, are calculated as.

K| -k, .|

o= Z (| w| | theorzetlcal| (34)
z |Ktheoretical |

This is contained in Table 1.

4.0 Results

4.1 Random window function, W,

It is so called because it is randomly generatadi inwindows out paths at random. Besides,
unlike other cases, the weights were generatedraplex numbers. The results are shown in Figures 3
Kw;, is the non-uniform propagator to compare with KFor this window function W the available
facilities for computations did not permit weighgirall the 3277 paths. The reason is that bing
complex has two sets of values. In this case dhgevof N, is restricted to [ < 3000.
4.2 Exponential window function, W,

This is a type of Gibb’s weight and is expressed a

_ exp—(Rj - Rmm)
’ Rmin

Where Ry, is the classical action for the system. By thetak shown in Figure 4.1 the aim is to eliminate
paths with large action. Such paths may be temsedild paths referred to by [3].

The results are presented in Figures 3.2., i€presents the non-uniform propagator. Ther@is n
restraint on the choice of Nn this case. So we choosg N 3277, 500, 5.

We =exp - (R_ |%nin)/Rmin

(4.1)

» Ri— Rnin)/Rmin

Figure 4.1: Exponential window function
4.3 Gaussian window function, W,
This is expressed as

(4.2)

'min
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i.e. Gaussian on the action itself. (Vilke W,, is meant to enhance paths with actions close.fpaR the
expense of the wild paths. In addition, the effafciV, should be more pronounced than that qfdiving
to the sketch shown in Figure.4.3. Figure 3.3 stimvcorresponding results. The non-uniform profmga
is Kwg,.

W, = exp — [(R— Ruin)/Rminl”

‘ﬁ\' > (Rj_Rnin)/Rmin

Figure 4.2: Guassian window function

5.0 Velocity window function, W,
We chose, such that the speedjvgiven by
X, =X,
V,=————mc (5.1)
gi
(c is the velocity of light). This implies boundedseas required in fundamental physics. Then the

window

1, if nophysicalviolation
function, W, = (5.2)
0,if physicalviolation

N

i.e. for any path, we calculate 1, = ,2; X, =X, (5.3)
with t = I/v on conditiory, = |/t < v, where \,g(is a cho)sen values. Then
me X —%,)°
ERAL N s 5.4
=310 5
otherwise when condition is not met k RO (5.5)

N, is determined by, given by

° N
| = 2,4,5 and the possible values idfe= 2457, 1638, 819 as seen in Figure 3.5

v = IN, - total space division
total time division

t

6.0 Discussion

As in [8], Table 1 contains computed values ef thlative deviatiow of the 4 window functions
for the various systems with different,No provides reasonable quantitative details abountbasure of
suitability of the window functions. Besides, ivg@s more elaborate information about the effettthe
window functions, which is not obvious from the wéwms of K and K,; as the two appear to coincide
almost completely when plotted on the same page.

Table 1: Displaying of the four window functions for Simple
Harmonic Oscillator vs. Space

Ny o [ (o) (o
2457 0.0326 0.0241 0.2718 0.0920

1638 0.0775 0.0685 0.2815 0.1920

819 0.0009 0.0022 0.0021 0.0021
Since the values af;, o, 04, 0y are small throughout, it again confirms the clessnof K and K,. This is
in consistent with [8].
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7.0 Conclusion
The work further consolidates the findings ofdtainterpart work [8]. The constant smallness of

the values o6 is indicative of the suitability of the window fations.
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Fig 4.13 Random window of a simple harmonic oscillator ( Vs Space ):
(a) Nw = 5: (b) Nw = 500: (c) N = 3277, Nw = 2000
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9. 4.23 Exponential window of simple harmonic oscillator (Vs Space ):
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Fig.4.35 Gaussian window of simple harmonic oscillator ( Vs Space ):
7

(a) Nw = 5: (b) Nw = 500: (c) N = Nw = 327

Journal of the Nigerian Association of Mathematical Physics, Volume 8 (November 2004)

Propagator of a simple Harmonic Oscillaltor-2

Eltgen, G. T. Akpabio and A. A. Okon

J of NAM



1.00 (a)Nw=2819

= * - Y=IKs|(sq)
Y = KW (sq)

-20.00 -10.00 0.00 10.00 20.00

mc} /’\ (b)Nw = 1638
.50 )
Y o R
L
P .
* T T #

i T 1

-20.00 -10.00 0.00 10.00 20.00
Space
1.00
% (c)N=3277, Nw = 2457
0.50
Y

L 1{ N T f T IR

-20.00 -10.00 0.00 10.00 20.00

Space

Fig4.43 Velocity window of a simple harmonic oscillator ( Vs Space ):
(a) Nw = 819; (b) Nw = 1638; (c) N = 3277; Nw = 2457
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