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Abstract

We have studied the effect of small perturbationsin the coriolis and the centrifugal
forces together with oblateness and radiation pressure forces of the
primaries on the locations of equilibrium points in the restricted three-
body problem. We have found that oblate-ness and radiation pressure
forces affect the locations of equilibrium points. We have further seen that
the positions of equilibrium points are not affected by the change in the
coriolisforce. They are only affected by the changein the centrifugal force.
It is also observed that the triangular points form triangles with the
primaries and lieon thelinejoining the primaries.
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1.0 Introduction

The classical restricted three- body problem cassigfive equilibrium points, three of which are
collinear and the remaining two are equilaterangular points. The collinear points are denotedbL,
and L and the triangular points by, and L,

Redizievskii [11] formulated the photogravitationedstricted three-body problem from the
classical problem when one of the interacting nms$sen intense emitter of radiation. Bhartnagat a
Hallan [9] studied the effect to small perturbatian the coriolis and the centrifugal forces on lteation
and stability of equilibrium points in the restadtproblem. Sharma [8] examined the linear stghdlf
triangular libation points of the restricted prablevhen the more massive primary is a source oftiaai
and oblate spheroid as well. Khasan [6] showeckttigtence of libration points (equilibrium poinemd
their stability in the photo- gravitational elliptrestricted three—body problem. Kunitsyn [3,4idé&d of
triangular ands collinear points respectively ia ghoto-gravitational three-body problem. Dankawit]
gave an account for gravitational interactions wlith asteroids and the sun and the radiation meegsam
the sun.

The idea of the radiation pressure forces and eflass of the raises a curiosity in our mind tal\stilne
combined effects of perturbations, radiation anthtebness of the primaries on the location of élgpiim
points in the restricted three-body problem.

2.0 Equations of motions

Let m; and m, be the masses of the bigger and smaller primamess, the mass of the third
infinitesimal body. We assume that both primasdess oblate spheroid and radiating as well. AgandA,
denote the oblate-ness coefficients of the biggdrsanaller primaries respectively such that 0;< A 1,i
=1, 2. We denote the radiation factorsgpyandq, for the bigger and smaller primaries respectiselgh
thatg=1-9,,i=1,2

Let (x, y) be the coordinates of the infinitesimal magsn a rotating coordinates system with the
origin at 0. The line joining the primaries is takas the x- axis and the line perpendicular t@iht they-
axis. Let the origin be the barycentre of magsat (x,, 0 ) and massn, at (x,, 0 ). Then in the
dimensionless synodic coordinates system; the mupsabf motion of the infinitesimal mass under the
influence of oblateness and radiation repulsivedsiof the primaries are in [5],
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& 2ng=U e+ 2n&=U | (2.1)

) n’ 1-u vl 1-u U
with U=—(X"+y*)+ +q, +—— + 2.2
2( y*) - G +-5 0 o Ad, ZrzAzqz (2.2)
r=(x-p) +y?, = (x+l-p) +y (2.3)
and the mean motion n is given by
n* =142 (A +A) (2.4)

We consider the perturbations in the coriolis and the cegsifforces using the parameters
¢ and Y respectively. The unperturbed value of each is unity. Thestiations of motion become
£-2nog-—n*Px=F, & 2neR—n’Py=F, (2.5)
whereF =1_—“q1 +Ha + (1_21) AQ, + 2“3 Aq,. We take
r r,

1 2

p=1+g, |gf 1

Ww=1+¢', || mm1
where € and ¢ 'are the small perturbations in the coriolis areldbntrifugal forces respectively. Equations
(2.5) can be put in the form

(2.6)

£e2npp=Q - 2npk= 0 (2.7)
where Q=lnqu(x2 +y2)+1_—“q1+£qz+l_tl LBAZq2 (2.8)
2 r, r, 2r; 2r,

3.0 Location of equilibrium points
The equilibrium positions exist at the points whé:r§= 0,Q,=0. Thatis

1-u  u ( )
X|:n l// 3 — 0.~ rg —d, 2 A1q1 AzQz:| 3\
1- 1- 3(1- 3 uli-u
( 3,U)ql_ﬂ( 3,U)q2+_( sﬂ)Alql__N#(s )A2q2=0
r r, 2 1, 2 r,
and > (3.1)

» 1- 3
y|:n¢/_ rgﬂql _%qz _E( )ALQ1 Azq2:|

1 2 rl

3.1 Locations of triangular points J
To locate the triangular points we consider th@sdcequation of (3.1) for# 0 so that
1_
nw-Hg -t -2 2 (1) 5, - AL =0 (3.2)

1 2 1

Using (3.2) in the first equation of (3.1), we dbta
9 _0,,3A0  3Aq,
reord 20 23

After re-writing equation (3.2) and making use qtiation (3.3), we have

=0 (3.3)

W - ?3 2 A:lql =0 (3.4)
Combing (3.3) and (3.4) we get n’*y —?—23—2 A:?Z =0 (3.5
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We can obtain;rand 5 from equations (3.4) and (3.5), and coordinatdsiafigular points by solving
equation (2.3) fok andy. The exact coordinates of And Ls are given by

X:lu—1+—2 1 , y=%
2 2 2 4 2

When the primaries are neither radiating nor obldgteeroid i.eA = 0,q; =1 ( =1,2), the solutions of (3.4)

) 1
2 2 2 2 2 2 2
r, -r r+r, _1_ (rz -n ) (3.6)

1
and (3.5) are; =¢*. Therefore, we may assume that the solution8.4j @nd (3.5) are

r, :il+a'i (3.7)
l//3
la, |<<1, (i=12) (3.8)

are very small. If we restrict ourselves to onmhelr terms im, , A;, 1 -g; and coupling terms iA;q;,
A0z, Ya, A P we obtain the expressions far, and o, respectively as

=] - ula s a)-ul-0)+ 3 Aqu’ | and
33

@ = -Sula +a)-wl-a) S aq |
33

putting these values af, anda, in (3.7), we get

r :i{l_Al+Az _1—q1+A12q1w§} and rzzil[l_Al+Az _1-q, Ag, wi}(&g)
l//S

! wg 2 3 2 3 2
Substituting these values igfandr, into equations (3.6) we obtain
11 1 1 2
X=pu-=+=@A1-q,)-=@1-q,)+= - 3
1= 3( a,) 3( d,) 2(Azqz Ay
and (3.10)
V4- E 2 1 1 1 2
y=ts——|1- 2{AﬁAz+§(1—q1)+§(1—q2)—E(Alq1+Azq2w)3}
2[/13 4_4/3

These points are denoted lbyandLs, and are known as triangular liberation points.
3.2 Locations of collinear points
The collinear positions are the solutions of eiqumst (3.1) whery = 0. That is

1- - -x-1 3(1- -
n2g x+ ¢ ﬂ:(sﬂ X)qlw(ﬂrf )qz+§( ,U:(S,U X)Alql
' ? ' (3.11)
+§,U(,U—X—1) Aq,=0, y=0

2 r°

1

The collinear points are the solutions of equafl), and their abscissas are the roots of thatem
1-pu)x- X+1- 1- X—
f00 = gm0 H) O L) )

_ 3 1 +1- 3 2 2 _ 5
| x=u| | x+1-p| , (Ix+1/1I | (3.12)
X —_—
- /J /Js Azqz :O
2| x+1-p|
. df(X) _ A . L
Now, since r > 0in eachof theopenintervals((—co, u —1),(u —1,1) and(, ) ; it follows that the
X

function is strictly increasing in each of the .
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Also f(x) approaches-« asx approaches-c or (,u—1)+0 or u+0 and f(x) approacheso
asx approacheso or (u—l)—O or u—0 or .. Therefore there exist one and only one value iofeach
of the above intervals such thgt) = 0. Further, we see th&f( ¢ - 2) < 0,f (0) > 0 andf (u + 1) >0.

Hence, there are only three real roots of equatph?) with one lying in each of the open intervals
(p—2,u—1), (u—l,O) and (u,p +1). This shows the locations of the three collingaints L, L, and Ls.

The first is located to the left of the second paniyy the second is between the two primaries aadHind
collinear liberation point is to the right of thiest primary. To find the position of;lwe putr, =4 -X, r»

=4 -Xx-1,inequation (3.11) we have

1-u U 3 (1-4) U

2 3 _
an+(ﬂ_X)2 q1+(,U—X—1)Z qz Z(IU X) A1Q1+E(Iu_x_1)4 Azqz_o (313)
On puttingr, =p—x-1=¢&, equation (3.13) becomes

3 (1-u)
[ (A1+Az)}<//(ﬂ 1- f)+(£+1)2q1 ey A 254 fag,=

substitutinga for {1+ (A + Az)}gl/ it yields
ag® ~a(u~5)&* ~a(4u~10)¢" ~[a(6u~10)+(1- u)q, + 1], ] &°

—[a(4/1—5)+2(1—/1)q1+4m2]$5—[a( 1)+(1- )g, + 610, + (1 H)AQ, = ﬂAzqz}“

~[4u q, +6uAQ,]E [, +9uAQ,]E —GﬂAzqu—EﬂAzqz =0 (3.14)

This is a ninth—-degree algebra equationéinwith parameteru . Descartes’ sign rule indicates that
equation (3.13) has at least one positive rootvigglequation foré (using small parameter method) we
find that there is one real rodt= 0 for 4 = 0. Equation (3.13) may be written as

(1‘#){-a+q1(5+1)‘2 +g Agq,(é+1)" —af} = #(‘quz —g Aq,&™ +a{j

elalen) -aler) -3 aa
and simplified to K- (3.15)

alks (f+1)4{q2<‘2 ~a&® +§Azqz}

"
In order to obtain a series solution ®rin powers of the quantity = {L} , We assume
Y7,

& =c,u+c,u?+c,u° + MMM c,u° + M (3.16)
and which when substituted in (3.14) the first foaefficients were obtained to be
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oo 3Aq, . _~(a+2q,+6Aq)3AG, ):

3 nT 3
Z(a_q;l _2A1qu {Z(a_q_gAlql\J}

-3a+2q, +6Aq,J3A,,)" q, +9A4, , Ja+29,+6Aq,)3A,0,)"

feenganf| 2ot brat 2izfe-a-3na)

+ (253‘10% )(a + 2q1 + 6A1q1 )(3A2q2) _ (10&— a, )(3A2q2 )%

Z(a—ql—gAlqu}d Z{Z[a—ql—zAlqu}A
. __ 20,%3A0, g, +9Aq,Ja+20, +6Aq)BAG) , (0. +9Aq.)'
2la-q -3 AQ 3 : 3 i 3
t2 ' Z{Z(a_ql_zAlqu} Z{Z[a_ql_zpﬁqu} (‘?’Azqz)4

+ 3(qz + 9Azq2 )(a+ 2q1 + 6A1q1) _ (2561—10]1 )(qz + 9Azqz )(a + 2q1 + 6A1q1 )(3Azqz )%

Z{Z(a_ql_gﬁqu}4(3AZQZ)i Z{Z(a_ql_gﬁqu}L‘

5 = S

Alw

2

(10&— ql)(qz 9A2qz ) (3A2q2 )% _ 3(a+ 2q1 + 6A1q1)(3Azq2 )% + (qz + 9Azqz ) (3A2q2 )%

st et et

_3la+2q,+6Aq,)3A,0,) , (25a-10q, )a+2q, +6Aq, Jeaq,):  (10a-q,)3A0,):

Z{Z(a—ql-gﬂqu} { a-q, - Alql } Z{Z(a'ql_gAquJ}

(a+29, +6Aq,)'(3A,0,) _9a+2q, +6Aq,)’ (3Azqz) , 30, +9A,)(a+2q, +6Aq,) |

{Z[a—ql —ﬁAlqu} Z{Z[a—ql —ﬁAlqu} 2{2(a—q1—§Alql )

+
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9(a+2q1 +AQ, )2(3A2q2)% _ (2%_10(41)(3‘-"2%64- Aiql)(3AZQZ) _ 3(10a_1OQ1)(a+2q1 +6A1Q1)(3AZQZ) _

2 3 ) 2
Z{za_ql _gAlql )} Z{Z(a_ql _E Alqu} Z{Z(a_ql _2Alqu}

(25a—10q1)(a+ 2q1 +6A1q1)3 (3Azq2)7 (25a 10q1 a+2q1 +6A1q1)(3A2q ) (Zsa_loql)(ql +9A2qz) _

doatne] i) ofeing

3(25a-10q,)(a+2q, +6Aq,)(3A,0,): _(25a-10g,)’ (a+29, +6Aq,)(3A,0,) , (L0a-q,)(252-10q,)(3A,9,)

T A I e

31oa-q,)(a+20,+6Aq,)(3A0,)  5a(3Aq,)

Honin] o]

The values o€, ¢,, c3, ¢, Obtained are in terms 8§, A,, d;, 0, andy , and when substituted into
equation (3.16), and using the fact that
L +u+p? + =
= u( u] WL g p? + = p,
The abscissa of the first collinear point)ls given by
X, =u-1-¢ (3.17)
Similarly, we can find the positions of bnd Ls.

4.0 Discussions

i If the primaries are neither oblate nor radiating, A; = 0, A, = 0,0;=1, g = 1, then
equations (3.9) and (3.10) correspond to the reslitained by Bhartnagar and Hallan [9].

ii. WhenA; = 0,0, =1, ¢ =1, ¢ =1, equation (3.9) and (3.10) is the same as thaharma [8].

iii. If there are no perturbations in coriolis and déumgal forces, i.ey =1, ¢ = 1, equations
(3.9) and (3.10) tally with the results of Singlddshwar [5]

iv. In equations (3.9) and (3.18) #r, implies that the triangular points (land Ls) form
simple triangles with the primaries different fofg], [3] and [4] contrary to the classical casewhich
they form equilateral triangles.

V. Appearance of;, Ay, 0;, 0 and ¢ in equation (3.9) and (3.16) due to oblatenestiatian the
centrifugal force indicate that these factors dftae locations of triangular and collinear poinEquations
(3.1) are independent of;, also indicate that the coriolis force does néciftheir positions.

Vi. Equation (2.4) shows that the mean motionfisci®d by oblateness only.

5.0 Conclusion
We have shown the existence of five equilibriumngmiL;, i =1..., 5. The point, andLs form
simple triangles with the primaries contrary to thassical or other problems. The poihisL, andL;

remain collinear and lie on the line joining thanmries. We have seen that oblateness of radiation

pressure force affect the location of the equilibripoints but are not affected by the change ircthiolis
force. They are only affected by the change indhetrifugal force. Only oblateness affects theame
motion. Hence the location of equilibrium pointEatent as obtained by others.
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