Journal of the Nigerian Association of Mathematical Physics
 Volume 8 (November 2004)

Combined effects of perturbations, radiation and oblateness on the location of equilibrium points in the restricted three-body problem.

${ }^{1}$ AbdulRazaq AbdulRaheem and Jagadish Singh
e-mail; razi ing@yahoo.com
Department of Mathematics, Faculty of Science
Ahmadu Bello University, Zaria, Nigeria

Abstract

We have studied the effect of small perturbations in the coriolis and the centrifugal forces together with oblateness and radiation pressure forces of the primaries on the locations of equilibrium points in the restricted threebody problem. We have found that oblate-ness and radiation pressure forces affect the locations of equilibrium points. We have further seen that the positions of equilibrium points are not affected by the change in the coriolis force. They are only affected by the change in the centrifugal force. It is also observed that the triangular points form triangles with the primaries and lie on the line joining the primaries.

Key words: equilibrium points, oblate-ness, perturbations, radiation, and restricted three- body problem.
pp 19-24

$1.0 \quad$ Introduction

The classical restricted three- body problem consists of five equilibrium points, three of which are collinear and the remaining two are equilateral triangular points. The collinear points are denoted by $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} and the triangular points by L_{4} and L_{5}.

Redizievskii [11] formulated the photogravitational restricted three-body problem from the classical problem when one of the interacting masses is an intense emitter of radiation. Bhartnagar and Hallan [9] studied the effect to small perturbations in the coriolis and the centrifugal forces on the location and stability of equilibrium points in the restricted problem. Sharma [8] examined the linear stability of triangular libation points of the restricted problem when the more massive primary is a source of radiation and oblate spheroid as well. Khasan [6] showed the existence of libration points (equilibrium points) and their stability in the photo- gravitational elliptic restricted three-body problem. Kunitsyn [3,4] studied of triangular ands collinear points respectively in the photo-gravitational three-body problem. Dankowicz [1] gave an account for gravitational interactions with the asteroids and the sun and the radiation pressure from the sun.
The idea of the radiation pressure forces and oblate-ness of the raises a curiosity in our mind to study the combined effects of perturbations, radiation and oblate-ness of the primaries on the location of equilibrium points in the restricted three-body problem.

2.0 Equations of motions

Let m_{1} and m_{2} be the masses of the bigger and smaller primaries, m is the mass of the third infinitesimal body. We assume that both primaries are oblate spheroid and radiating as well. Let A_{1} and A_{2} denote the oblate-ness coefficients of the bigger and smaller primaries respectively such that $0<\mathrm{A}_{\mathrm{i}} \ll 1, i$ $=1,2$. We denote the radiation factors by q_{1} and q_{2} for the bigger and smaller primaries respectively such that $q_{i}=1-\delta_{i}, i=1,2$

Let (x, y) be the coordinates of the infinitesimal mass m, in a rotating coordinates system with the origin at 0 . The line joining the primaries is taken as the x -axis and the line perpendicular to it being the y axis. Let the origin be the barycentre of mass m_{1} at $\left(x_{1}, 0\right)$ and mass m_{2} at ($\left.x_{2}, 0\right)$. Then in the dimensionless synodic coordinates system; the equations of motion of the infinitesimal mass under the influence of oblateness and radiation repulsive forces of the primaries are in [5],
Journal of the Nigerian Association of Mathematical Physics, Volume 8 (November 2004)
Equilibrium points in the restricted three-body problem. AbdulRazaq AddulRaheem and Jagadish Singh J. of NAMP
with

$$
\begin{gather*}
2 n \&=U_{x} \quad 2 n x=U_{y} \tag{2.1}\\
U=\frac{n^{2}}{2}\left(x^{2}+y^{2}\right)+\frac{1-\mu}{r_{1}} q_{1}+\frac{\mu}{r^{2}} q_{2}+\frac{1-\mu}{2 r_{1}^{3}} A_{1} q_{1}+\frac{\mu}{2 r_{2}^{3}} A_{2} q_{2} \tag{2.2}
\end{gather*}
$$

$$
\begin{equation*}
r_{1}^{2}=(x-\mu)^{2}+y^{2}, \quad r_{2}^{2}=(x+1-\mu)^{2}+y^{2} \tag{2.3}
\end{equation*}
$$

and the mean motion n is given by

$$
\begin{equation*}
n^{2}=1+\frac{3}{2}\left(A_{1}+A_{2}\right) \tag{2.4}
\end{equation*}
$$

We consider the perturbations in the coriolis and the centrifugal forces using the parameters ϕ and ψ respectively. The unperturbed value of each is unity. Then the equations of motion become

$$
\begin{equation*}
2 n \phi>n^{2} \psi x=F_{x}, \quad 2 n \phi x-n^{2} \psi y=F_{y} \tag{2.5}
\end{equation*}
$$

where $F=\frac{1-\mu}{r_{1}} q_{1}+\frac{\mu}{r_{2}} q_{2}+\frac{(1-\mu)}{2 r_{1}^{3}} A_{1} q_{1}+\frac{\mu}{2 r_{2}^{3}} A_{2} q_{2}$. We take

$$
\begin{align*}
& \varphi=1+\varepsilon, \quad\|\varepsilon\| \pi \pi 1 \tag{2.6}\\
& \psi=1+\varepsilon^{\prime},\left\|\varepsilon^{\prime}\right\| \pi \pi 1
\end{align*}
$$

where ε and ε^{\prime} are the small perturbations in the coriolis and the centrifugal forces respectively. Equations (2.5) can be put in the form

$$
\begin{gather*}
2 n \phi \quad=\Omega_{x} \quad 2 n \phi \&=\Omega_{y} \tag{2.7}\\
\Omega=\frac{1}{2} n^{2} \psi\left(x^{2}+y^{2}\right)+\frac{1-\mu}{r_{1}} q_{1}+\frac{\mu}{r_{2}} q_{2}+\frac{1-\mu}{2 r_{1}^{3}} A_{1} q_{1}+\frac{\mu}{2 r_{2}^{3}} A_{2} q_{2} \tag{2.8}
\end{gather*}
$$

where
3.0 Location of equilibrium points

The equilibrium positions exist at the points where $\Omega_{x}=0, \Omega_{y}=0$. That is

$$
\begin{align*}
& x\left[n^{2} \psi-\frac{1-\mu}{r_{1}{ }^{3}} q_{1}-\frac{\mu}{r_{2}^{3}} q_{2}-\frac{3}{2} \frac{(1-\mu)}{r_{1}^{5}} A_{1} q_{1}-\frac{3}{2} \frac{\mu}{r_{2}^{5}} A_{2} q_{2}\right] \tag{3.1}\\
& +\frac{\mu(1-\mu)}{r_{1}^{3}} q_{1}-\frac{\mu(1-\mu)}{r_{2}^{3}} q_{2}+\frac{3}{2} \frac{(1-\mu)}{r_{2}^{5}} A_{1} q_{1}-\frac{3}{2} \mu \frac{\mu(1-u)}{r_{2}^{5}} A_{2} q_{2}=0
\end{align*}
$$

and

$$
y\left[n^{2} \psi-\frac{1-\mu}{r_{1}^{3}} q_{1}-\frac{\mu}{r_{2}^{3}} q_{2}-\frac{3}{2} \frac{(1-\mu)}{r_{1}^{5}} A_{1} q_{1}-\frac{3}{2} \frac{\mu}{r_{2}^{5}} A_{2} q_{2}\right]=0
$$

3.1 Locations of triangular points

To locate the triangular points we consider the second equation of (3.1) for $y \neq 0$ so that

$$
\begin{equation*}
n^{2} \Psi-\frac{1-\mu}{r_{1}^{3}} q_{1}-\frac{\mu}{r_{2}^{3}} q_{2}-\frac{3}{2} \frac{(1-\mu)}{r_{1}^{5}} A_{1} q_{1}-\frac{3}{2} \frac{\mu}{r_{2}^{5}} A_{2} q_{2}=0 \tag{3.2}
\end{equation*}
$$

Using (3.2) in the first equation of (3.1), we obtain

$$
\begin{equation*}
\frac{q_{1}}{r_{1}^{3}}-\frac{q_{2}}{r_{2}^{3}}+\frac{3}{2} \frac{A_{1} q_{1}}{r_{2}^{5}}+\frac{3}{2} \frac{A_{2} q_{2}}{r_{2}^{5}}=0 \tag{3.3}
\end{equation*}
$$

After re-writing equation (3.2) and making use of equation (3.3), we have

$$
\begin{equation*}
n^{2} \Psi-\frac{q_{1}}{r_{1}^{3}}-\frac{3}{2} \frac{A_{1} q_{1}}{r_{1}^{5}}=0 \tag{3.4}
\end{equation*}
$$

Combing (3.3) and (3.4) we get $n^{2} \psi-\frac{q_{2}}{r_{2}{ }^{3}}-\frac{3}{2} \frac{A_{2} q_{2}}{r_{2}{ }^{5}}=0$

Journal of the Nigerian Association of Mathematical Physics, Volume 8 (November 2004)

Equilibrium points in the restricted three-body problem. AbdulRazaq AddulRaheem and Jagadish Singh J. of NAMP

We can obtain r_{1} and r_{2} from equations (3.4) and (3.5), and coordinates of triangular points by solving equation (2.3) for x and y. The exact coordinates of L_{4} and L_{5} are given by

$$
\begin{equation*}
x=\mu-\frac{1}{2}+\frac{r_{2}^{2}-r_{1}^{2}}{2}, \quad y= \pm\left[\frac{r_{1}^{2}+r_{2}^{2}}{2}-\frac{1}{4}-\frac{\left(r_{2}^{2}-r_{1}^{2}\right)^{2}}{2}\right]^{\frac{1}{2}} \tag{3.6}
\end{equation*}
$$

When the primaries are neither radiating nor oblate spheroid i.e. $A_{i}=0, q_{i}=1(i=1,2)$, the solutions of (3.4) and (3.5) are $r_{i}=\psi^{\frac{1}{3}}$. Therefore, we may assume that the solutions of (3.4) and (3.5) are

$$
\begin{align*}
& r_{i}=\frac{1}{\psi^{\frac{1}{3}}}+\alpha_{i} \tag{3.7}\\
& \left|\alpha_{i}\right| \ll 1, \quad(i=1,2) \tag{3.8}
\end{align*}
$$

are very small. If we restrict ourselves to only linear terms in $\alpha_{i}, \mathrm{~A}_{i}, 1-q_{i}$ and coupling terms in $A_{1} q_{l}$, $A_{2} q_{2}, \psi \alpha_{i} A_{i} \psi$ we obtain the expressions for α_{1} and α_{2} respectively as
$\alpha_{1}=\frac{1}{3 \psi^{\frac{4}{3}}}\left[-\frac{3}{2} \psi\left(A_{1}+A_{2}\right)-\psi\left(1-q_{1}\right)+\frac{3}{2} A_{1} q_{1} \psi^{\frac{5}{3}}\right]$ and
$\alpha_{2}=\frac{1}{3 \psi^{\frac{4}{3}}}\left[-\frac{3}{2} \psi\left(A_{1}+A_{2}\right)-\psi\left(1-q_{2}\right)+\frac{3}{2} A_{2} q_{2} \psi^{\frac{5}{3}}\right]$,
putting these values of α_{1} and α_{2} in (3.7), we get
$r_{1}=\frac{1}{\psi^{\frac{1}{3}}}\left[1-\frac{A_{1}+A_{2}}{2}-\frac{1-q_{1}}{3}+\frac{A_{1} q_{1}}{2} \psi^{\frac{2}{3}}\right]$ and $r_{2}=\frac{1}{\psi^{\frac{1}{3}}}\left[1-\frac{A_{1}+A_{2}}{2}-\frac{1-q_{2}}{3}+\frac{A_{2} q_{2}}{2} \psi^{\frac{2}{3}}\right]$
Substituting these values of r_{1} and r_{2} into equations (3.6) we obtain

$$
\begin{align*}
& \qquad x=\mu-\frac{1}{2}+\frac{1}{3}\left(1-q_{1}\right)-\frac{1}{3}\left(1-q_{2}\right)+\frac{1}{2}\left(A_{2} q_{2}-A_{1} q_{1}\right) \psi^{\frac{2}{3}} \tag{3.10}\\
& \text { and } \\
& y= \pm \frac{\sqrt{4-\psi^{\frac{2}{3}}}}{2 \psi^{\frac{1}{3}}}\left[1-\frac{2}{4-\psi^{\frac{2}{3}}}\left\{A_{1}+A_{2}+\frac{1}{3}\left(1-q_{1}\right)+\frac{1}{3}\left(1-q_{2}\right)-\frac{1}{2}\left(A_{1} q_{1}+A_{2} q_{2} \psi\right)^{\frac{2}{3}}\right\}\right]
\end{align*}
$$

These points are denoted by L_{4} and L_{5}, and are known as triangular liberation points.
3.2 Locations of collinear points

The collinear positions are the solutions of equations (3.1) when $y=0$. That is
$n^{2} \psi x+\frac{(1-\mu)(\mu-x)}{r_{1}{ }^{3}} q_{1}+\mu \frac{(\mu-x-1)}{r_{2}{ }^{3}} q_{2}+\frac{3}{2} \frac{(1-\mu)(\mu-x)}{r_{1}^{5}} A_{1} q_{1}$

$$
\begin{equation*}
+\frac{3}{2} \frac{\mu(\mu-x-1)}{r_{1}^{5}} A_{2} q_{2}=0, \quad y=0 \tag{3.11}
\end{equation*}
$$

The collinear points are the solutions of equation (3.11), and their abscissas are the roots of the equation

$$
\begin{align*}
f(x)=n^{2} \psi x-\frac{(1-\mu)(x-\mu)}{|x-\mu|^{3}} q_{1}-\frac{\mu(x+1-\mu)}{|x+1-\mu|^{3}} q_{2} & -\frac{3(1-\mu)(x-\mu)}{2|x-\mu|^{5}} A_{1} q_{1} \tag{3.12}\\
& -\frac{3 \mu(x+1-\mu)}{2|x+1-\mu|^{5}} A_{2} q_{2}=0
\end{align*}
$$

Now, since $\frac{d f(x)}{d x}>0$ in each of the open intervals $((-\infty, \mu-1),(\mu-1, \mu)$ and (μ, ∞); it follows that the function is strictly increasing in each of the interval.

Journal of the Nigerian Association of Mathematical Physics, Volume 8 (November 2004)

Equilibrium points in the restricted three-body problem. AbdulRazaq AddulRaheem and Jagadish Singh J. of NAMP

Also $f(x)$ approaches $-\infty$ as x approaches $-\infty$ or $(\mu-1)+0$ or $\mu+0$ and $f(x)$ approaches ∞ as x approaches ∞ or $(\mu-1)-0$ or $\mu-0$ or ∞. . Therefore there exist one and only one value of x in each of the above intervals such that $f(x)=0$. Further, we see that $f(\mu-2)<0, f(0)>0$ and $f(\mu+1)>0$. Hence, there are only three real roots of equation (3.12) with one lying in each of the open intervals $(\mu-2, \mu-1),(\mu-1,0)$ and $(\mu, \mu+1)$. This shows the locations of the three collinear points L_{1}, L_{2} and L_{3}. The first is located to the left of the second primary, the second is between the two primaries and the third collinear liberation point is to the right of the first primary. To find the position of L_{1} we put $r_{1}=\mu-\mathrm{x}, r_{2}$ $=\mu-\mathrm{x}-1$, in equation (3.11) we have
$n^{2} \psi x+\frac{1-\mu}{(\mu-x)^{2}} q_{1}+\frac{\mu}{(\mu-x-1)^{2}} q_{2}+\frac{3}{2} \frac{(1-\mu)}{(\mu-x)^{4}} A_{1} q_{1}+\frac{3}{2} \frac{\mu}{(\mu-x-1)^{4}} A_{2} q_{2}=0$
On putting $r_{2}=\mu-x-1=\xi$, equation (3.13) becomes

$$
\left[1+\frac{3}{2}\left(A_{1}+A_{2}\right)\right] \psi(\mu-1-\xi)+\frac{1-\mu}{(\xi+1)^{2}} q_{1}+\frac{\mu}{\xi^{2}}+\frac{3}{2} \frac{(1-\mu)}{(\xi+1)^{4}} A_{1} q_{1}+\frac{3}{2} \frac{\mu}{\xi^{4}} A_{2} q_{2}=0
$$

substituting a for $\left[1+\frac{3}{2}\left(A_{1}+A_{2}\right)\right] \psi$ it yields

$$
\begin{align*}
& a \xi^{9}-a(\mu-5) \xi^{s}-a(4 \mu-10) \xi^{7}-\left[a(6 \mu-10)+(1-\mu) q_{1}+\mu q_{2}\right] \xi^{6} \\
& -\left[a(4 \mu-5)+2(1-\mu) q_{1}+4 \mu q_{2}\right] \xi^{5}-\left[a(\mu-1)+(1-\mu) q_{1}+6 \mu q_{2}+\frac{3}{2}(1-\mu) A_{1} q_{1} \frac{3}{2} \mu A_{2} q_{2}\right] \xi^{4} \\
& -\left[4 \mu q_{2}+6 \mu A_{2} q_{2}\right] \xi^{3}-\left[\mu q_{2}+9 \mu A_{2} q_{2}\right] \xi^{2}-6 \mu A_{2} q_{2} \xi-\frac{3}{2} \mu A_{2} q_{2}=0 \tag{3.14}
\end{align*}
$$

This is a ninth-degree algebra equation in ξ with parameter μ. Descartes' sign rule indicates that equation (3.13) has at least one positive root. Solving equation for ξ (using small parameter method) we find that there is one real root $\xi=0$ for $\mu=0$. Equation (3.13) may be written as

$$
(1-\mu)\left[-a+q_{1}(\xi+1)^{-2}+\frac{3}{2} A_{1} q_{1}(\xi+1)^{-4}-a \xi\right]=\mu\left(-q_{2} \xi^{-2}-\frac{3}{2} A_{2} q_{2} \xi^{-4}+a \xi\right)
$$

and simplified to

$$
\begin{equation*}
\frac{\mu}{1-\mu}=\frac{\xi^{4}\left[a(\xi+1)^{5}-q_{1}(\xi+1)^{2}-\frac{3}{2} A_{1} q_{1}\right]}{(\xi+1)^{4}\left[q_{2} \xi^{2}-a \xi^{5}+\frac{3}{2} A_{2} q_{2}\right]} \tag{3.15}
\end{equation*}
$$

In order to obtain a series solution for ξ in powers of the quantity $v=\left[\frac{\mu}{1-\mu}\right]^{\frac{1}{4}}$, we assume

$$
\begin{equation*}
\xi=c_{1} v+c_{2} v^{2}+c_{3} v^{3}+\cdots \cdot+c_{9} v^{9}+\cdots \tag{3.16}
\end{equation*}
$$

and which when substituted in (3.14) the first four coefficients were obtained to be

$$
\begin{aligned}
& c_{1}=\left[\frac{3 A_{2} q_{2}}{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)}\right]^{\frac{1}{4}}, \quad c_{2}=\frac{-\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{2}}}{\left\{2\left(a-q-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{3}{2}}} \\
& c_{3}=\frac{-3\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{4}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)^{\frac{7}{4}}\right\}}+\frac{q_{2}+9 A_{2} q_{2}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{3}{4}}\left(3 A_{2} q_{2}\right)^{\frac{1}{4}}}+\frac{3\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{4}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{5}{4}}} s \\
& +\frac{\left(25 a-10 q_{1}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{3}{4}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{11}{4}}}-\frac{\left(10 a-q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{3}{4}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{5}{4}}} \\
& c_{4}=\frac{2 q_{2}+3 A_{2} q_{2}}{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)}-\frac{3\left(q_{2}+9 A_{2} q_{2}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{4}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{9}{4}}}+\frac{\left(q_{2}+9 A_{2} q_{2}\right)^{2}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{5}{4}}\left(3 A_{2} q_{2}\right)^{\frac{3}{4}}} \\
& +\frac{3\left(q_{2}+9 A_{2} q_{2}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{7}{4}}\left(3 A_{2} q_{2}\right)^{\frac{1}{4}}}-\frac{\left(25 a-10 q_{1}\right)\left(q_{2}+9 A_{2} q_{2}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{4}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{13}{4}}} \\
& \frac{\left(10 a-q_{1}\right)\left(q_{2} 9 A_{2} q_{2}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{4}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{7}{4}}}-\frac{3\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{3}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{5}{2}}}+\frac{\left(q_{2}+9 A_{2} q_{2}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{2}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{3}{2}}} \\
& -\frac{3\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{2}}+\frac{\left(25 a-10 q_{1}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{3}{2}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{7}{2}}}-\frac{\left(10 a-q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{3}{2}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{2} q_{2}\right)\right\}^{2}}+ \\
& \frac{\left(a+2 q_{1}+6 A_{1} q_{1}\right)^{3}\left(3 A_{2} q_{2}\right)}{\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{4}}-\frac{9\left(a+2 q_{1}+6 A_{1} q_{1}\right)^{2}\left(3 A_{2} q_{2}\right)}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{3}}+\frac{3\left(q_{2}+9 A_{2} q_{2}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{2}}+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{9\left(a+2 q_{1}+A_{1} q_{1}\right)^{2}\left(3 A_{2} q_{2}\right)^{\frac{1}{2}}}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{5}{2}}}-\frac{\left(25 a-10 q_{1}\right)\left(a+2 q_{1} 6+A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{4}}-\frac{3\left(10 a-10 q_{1}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)}{2\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{5}{2}}}- \\
& \frac{\left(25 a-10 q_{1}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)^{3}\left(3 A_{2} q_{2}\right)^{\frac{3}{2}}}{\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{11}{2}}}+\frac{\left(25 a-10 q_{1}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)}{4\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{3}}-\frac{\left(25 a-10 q_{1}\right)\left(q_{1}+9 A_{2} q_{2}\right)}{4\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{2}}- \\
& \frac{3\left(25 a-10 q_{1}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)^{\frac{1}{2}}}{\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{5}{2}}}-\frac{\left(25 a-10 q_{1}\right)^{2}\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)}{4\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{4}}+\frac{\left(10 a-q_{1}\right)\left(25 a-10 q_{1}\right)\left(3 A_{2} q_{2}\right)}{4\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{\frac{5}{4}}}+ \\
& \frac{3\left(10 a-q_{1}\right)\left(a+2 q_{1}+6 A_{1} q_{1}\right)\left(3 A_{2} q_{2}\right)}{4\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{3}}-\frac{5 a\left(3 A_{2} q_{2}\right)}{\left\{2\left(a-q_{1}-\frac{3}{2} A_{1} q_{1}\right)\right\}^{2}}
\end{aligned}
$$

The values of $c_{1}, c_{2}, c_{3}, c_{4}$ obtained are in terms of $A_{1}, A_{2}, q_{1}, q_{2}$, and ψ, and when substituted into equation (3.16), and using the fact that

$$
\frac{\mu}{1-\mu}=\mu\left(\frac{1}{1-\mu}\right)=\mu\left(1+\mu+\mu^{2}+\cdots\right) \approx \mu,
$$

The abscissa of the first collinear point $\left(\mathrm{L}_{1}\right)$ is given by

$$
\begin{equation*}
x_{1}=\mu-1-\xi \tag{3.17}
\end{equation*}
$$

Similarly, we can find the positions of L_{2} and L_{3}.

4.0 Discussions

i. If the primaries are neither oblate nor radiating, i.e. $A_{1}=0, A_{2}=0, q_{1}=1, q_{2}=1$, then equations (3.9) and (3.10) correspond to the results obtained by Bhartnagar and Hallan [9].
ii. When $A_{2}=0, q_{2}=1, \psi=1, \psi=1$, equation (3.9) and (3.10) is the same as that of Sharma [8].
iii. If there are no perturbations in coriolis and centrifugal forces, i.e $\psi=1, \phi=1$, equations (3.9) and (3.10) tally with the results of Singh and Ishwar [5]
iv. In equations (3.9) and (3.10) $r_{1} \neq r_{2}$ implies that the triangular points (L_{4} and L_{5}) form simple triangles with the primaries different form [2], [3] and [4] contrary to the classical case in which they form equilateral triangles.
v. Appearance of $A_{1}, A_{2}, q_{1}, q_{2}$ and ψ in equation (3.9) and (3.16) due to oblateness, radiation the centrifugal force indicate that these factors affect the locations of triangular and collinear points. Equations (3.1) are independent of, ϕ, also indicate that the coriolis force does not affect their positions.
vi. Equation (2.4) shows that the mean motion is affected by oblateness only.

5.0 Conclusion

We have shown the existence of five equilibrium points, $L_{i}, i=1 \ldots, 5$. The point L_{4} and L_{5} form simple triangles with the primaries contrary to the classical or other problems. The points L_{1}, L_{2} and L_{3} remain collinear and lie on the line joining the primaries. We have seen that oblateness of radiation pressure force affect the location of the equilibrium points but are not affected by the change in the coriolis force. They are only affected by the change in the centrifugal force. Only oblateness affects the mean motion. Hence the location of equilibrium points different as obtained by others.

References

[1] Dankowicz,h.(2002); Celestial Mechanics and Dynamical Astronomy 84:1-25.
[2] Sharma R.K.et al (2001); Existence and stability of librations points in the restricted three-body problem when the primaries are triaxial rigid bodies, Celestial Mechanics and Dynamical Astronomy, 79(2), 119-133.
[3] Kunitsyn, A. L. (2001); Journal of Applied Mathematics 65(4): 703-763.
[4] Kunitsyn, A.L. (2000); Journal of Applied Mathematics 64 (5): 757-763.
[5] Singh J. and Ishwar B. (1995): Stability of Triangular points in the Generalized Photo gravitational Restricted Three-Body problem, Bulletin in of Astronomical Society of India. 27 (3): 415-424
[6] Khasan, S.N. (1996); Libration points and their stability in the Photogravitational Elliptic Restricted three- Body problem, Cosmic Research 34(2): 146
[7] Dankowicz H. (1995); The Two-Body problem with Radiation pressure in rotating reference frame. Celestial Mechanics and Dynamical Astronomy -61(3): 287-31.
[8] Sharma, R.K.(1982); sun and planetary System, W.Fricke \&g. Teleki (e.d.e), by D. Reidel .435436.
[9] Bartnagar, K.B. and Hallan, p.p. (1978); Celestial Mechanics (18): 105.
[10] Szebehely, V. (1967); Theory of Orbits. Academic Press Inc.
[11] Radzievskii, V.V 1950); Astronomical Journal (USSR). 27 (5): 250

