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Abstract

The continuum damage theory of Kachanov and Rabotnov has
limitations since the mechanical properties of a material (especially plastic
deformation and fracture) are determined by its microstructure. When a
solid deforms at high temperature its microstructure may in some sense be
altered- holes and cracks may nucleate and grow inside the solid by various
mechanism controlled by diffusion and by power law creep or by a
combination of these mechanisms. Considering a coupled diffusion power
law creep mechanism using a mechanistic model approximate analytical
equations for the growth rate under multi-axial stress states are developed.
These results are related to the power law mechanistic results in a power
series like form, which are used to analyze the crack, tip fields for the coupled
mechanism using a strain gradient plagticity analysis. The Kachanov-
Rabotnov results and the HRR results are shown to be special cases of these
results.
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1.0 Introduction

When a solid deforms at high temperature or whel loearing metallic components operate at
temperatures in excess of approximately one tHirthe melting temperature consideration must bermiv
to the effect of creep deformation and rupture.

Rupture can be the consequence of thinning indbgddrge strains but it can also occur at small
strains as the result of growth of damage in théameHoles or cracks may nucleate and grow inide
solid; its grain size may increase or decreasgjitate or depressoids within it may coarsen ssalve; a
substructure introduced by prior working may betidg®gd or the microstructure may in some sense be
altered.

Also under the action of loads which are often @bersibly less than the fracture stress, and
especially at elevated temperature many solidscpgatly ceramics gradually deform plastically, aeep
until instabilities are created which lead to suddend often catastrophic, failure. Clearly theige of
components for engineering application must incoafey and thus allow for this creep behaviour s th
excessive plastic strain or premature fracturevdsdeed during the anticipated lifetime of the strue.

Creep fracture is a complicated phenomenon [1,9]nder creep conditions fracture most
commonly occur by the growth and coalescence adsjoivhich lie on grain boundaries. Voids usually
grow by diffusion when they are small but as thegcdme larger power law creep takes over as the
dominant creep mechanism. Thus for a general tegaticoupled mechanism like diffusion coupled with
power law should be considered.

Cocks and Ashby [4] and Oyesanya [24] have disclste interesting creep fracture
phenomenon under power law mechanism and couplasidn power law mechanism. As a micro-
mechanical concept the result were compared withoR@v-Kachanov equations of continuum damage
theory [15] and the inadequacy of continuum thesag highlighted.

A relationship between power law mechanism and leaumechanism involving power law will
be very useful as we can now use results for threeptaw to predict the results for coupled mechani
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this paper multi-axial constitutive relation is posed for steady state creep of polycrystallineenls
undergoing grain boundary conditions under couptedhanism of surface diffusion and power law. We
assume that the overall stresses are in a rangetlsaicthe void growth is creep constrained.

We show that there exists a power series likeiogldietween results for power law and coupled
mechanism. We apply these results to study theidnfle of cavitations in the stress and the strati@ r
fields at the tip of a macroscopic crack. We usedtrain gradient plasticity analysis since we gaire
that continuum

damage theory models lose their validity after @nmascale crack arises.

2.0 Modelsfor the void growth and assumptions

The results of Cocks and Ashby used in this paperbased on a mechanistic model shown in
Figure 1. We isolate a cylindrical element of mialeof diameter | (the void spacing) and grainestt
centered on a grain boundary void of diametgr Bhe surfaces of this are subjected to the sfiekls
0,,0,,0, as shown in Figure 2a, b, c. The simple mechamigsurface diffusion and power law are

shown in Figure 2.

Under surface diffusion mechanism the void becoftag¢ter and more crack-like and the void can
be idealized as a penny shaped crack of constadthveind semi-circular tip. Under this analysis we
assume that

0] When no cavities are present the average stsi@dky creep rate for the power law is
Q
& =A o"exp ——— 2.1
. =A(¢) p[ RT] (2.1)
(i) The steady state creep rate for the surfaffagion is
& = aaez.Q D, exp| - Q+Pav 2.2)
L*kT kT

o, =[}/2[ (0-1_0-2)2 +(Jz ~- 0, )Z+(U3 -0, )Z”}/Z

§§.S =[% [(51 —&, )2+(£2 —&; )2+(£3 —& )2]]}/2
and @ is the atomic volumeD, the surface diffusion coefficienk the Boltzman constanR the universal gas
constant, T absolute temperatugethe activation energy the activation volume. Grain boundaries slidethsd the
increase in volume of the slab containing the vaédgken up by a relative rigid body displacemeinthe grains on
either side.

(iii) Surface diffusion controls the early part wfid growth while power law creep takes over as the
voids become larger and the net section stress sis¢hat the coupled rate is simply the sum ofdles of
two individual mechanisms.

(2.3)

3.0 Constitutive law analysis
As shown in [3.4] for only surface diffusion mecksan the rate of change of area fractigrof
holes on grain boundary is given by

3
iﬂ:%_f%(g] )
0-0

The strain rate is given for this mechanism by

1de_ 4uilo, (o) (3.2)
& dt (1-f,)%do, | o, '
3
where 1 b.9.20, (3.3

W=
° 2 KT &
Here J, is the thickness of layer of material in whichfage diffusion takes place, is the surface free

energyo, and g, are creep constants. For pure power law
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1df, _ (o )] 1
&5 2 [y e o9

1de [ 2nB( 1 (o)
EE{“ Pl %J oo
where L= sinh{— 2%} (3.6)

is a parameter that measures effect of strain rate on vomthgno,, is the radius of growing voids. By
assumption (i) of section 2.0 the rate of change e&draction of holes for the coupled diffusive power

law is given by
df, _ Wl (o), fo. )] 1
— | — | |—--f 3.7
dt  (1-1,0 o, A o,) | @-1,) =) &

That is equation (3.1) plus equation (3.4) which for emience is written

1df £ o
— Z h= b+PS h P ° - (38)
& dt [ (1_fh) j(l_fh)
where o =(JeJ , 3 =wo(i) and b= g[1-(1-f,) "] (3.9)
0-0 0-0

Note thatr = 0 depicts pure diffusion mechanism andg n pure power law mechanism with index
Equation (3.8) fof ,, large (f, - 1),b - B gives

df, po;

3.10
d (1-f,) (.19
and for smalf ,, < < 1 we have
df, B «x 2d1 P, o,
— =172 f2(n+1) 8+ =[1-(n-3)f | ——~— 3.11
R G Lo e L T ) IR
For pure power law ;= 0 and
afy _p(_2 (3.12)
dt 1-f,

whereb - 3 for f |, large. This shows that tlig large results of (3.10) corresponds to the pureepdaw
mechanism which is just the continuum damage theesylt withf , = « as damage parameter. For
multi-axial case of power law mechanism the noreealistrain rate is given by

i) o
— =%l = —— (3.13)
‘86 ’ O, 0’0(1— fh )
the rate of change of area fraction of holes iggiby
df, ) s [ 1
— =%l —| —|+——-(1-f 3.14
dt (a) o—[[(l— f,) ( h)} 529
wheres; is the deviatoric stress. Equation (3.13) showsfibr f , <<1 we have
df B} e ,
d—:z,ﬁ?(go)l[l—(l— fh) 1]’~“(n+l)fh(§?(£0)1 (3-15)
&, f. large
that is df, _ v Thoarg (3.16)

dt (n+1)f,&, f, small

h™=p

For multi-axial case of the coupled diffusion powax we have in [23, 24].
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& o) s 2d1 Pt
T oyl & b s 3.17
& y(ao] ao(l—fh)"[*dz(l—fh)“] 347

and
n-1 IA %
df, g s; fi % ZdIP_fh
=%E| — R — 1 fhz £ = 3.18
av (JOJ a,(1-1,) [(n+ ) +dz(1‘ f,) ] (349
that is
Lo (nea)r, g +(n+1) 1, F: & =(nv)r[&+(nv1)r&]  @19)

Thus o+ 1), is a factor of change by (3.14) and (3.15). Istfallows that for multi-axial case
& +(n+1)f, & f, large

— h =
" (n+1)fh[s?,{’+(n+1)fh£jtj 1, f, small
where & s for power law mechanism anﬁ is the strain rate for surface diffusion mechanisitom
(3.16) and (3.20) and Figure 3 we deduce a glokefihition for f , small. For the purpose of our

exposition we definef:, small implies thaf, 0 (0, (1 + 1)*) for n-power law.
Following Hutchinson [13] in the absence of micragks the potential function can be taken as

(3.20)

S a_e n-1 S”_
@, = %€, n+1( ] o) (3.22)
o n-1 s
for which the strain rate is given by & = %.86( e) - (3.22)
UO UO
s,
Substituting (3.22) in (3.21) gives @, :_11‘8”‘ (3.23)
n
From the damage theory [15].
S -n
=% [ j —(1-w) (3.24)
g,
0_ n-1 Si,
so that forw = 0 (no damage) & = %.85( e] - (3.25)
UO UO
For w+# 0, w<<1 (3.24) can be written as
0_ n-1 S,,
& = ¢ L ll+nw+n(n+l)w’ +A 3.26
: %&%(UO] . (n+1)er +A) (3.26)
That is & =ne, {t+w[1+(n+1)c]}+hot (3.27)
One expects that in the presence of micro-cractdlamage
S,
¢>=—';1§?{1+na)[1+(n+1)w]} (3.28)
n
and we have fow= (n + 1) ¢=n¢0{%+(n+1)fh[1+(n+1)fh]} (3.29)

We can then conjecture the result
@, for no micro-crack
n(n+1) f,@[t+(n+1)f, | for micro-cracks

Noting (3.23) we can write this result as

(3.30)
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S )
— 59& for nomicro—crack

o= n+ (3.31)

%&%{ n(n+1)f,[1+(n+1)f,]+1}, for micro-crack

4.0 Crack tip fields

We note as in [23] that under surface diffusion hagism the void becomes flatter and more
crack-like so that the void can be idealized asrmp-shaped crack of constant width and semi-ardip.
Thus for the crack-tip in the power law creep meditra zone the singularity fields following Hutchams
[12], Rice and Rosengren [26] can be written as

4 e baz 4 P
Ei:aKﬂr iz (8.n), Zi:a'K(,r g (8,n) (4.1)
where (Eij ,&ij) are non-dimensional field quantities agds given by (3.21). In this case Rice’s J-integral
[25] characteristics also apply so that ~ J =", (WrL - nja”.viyx)r dé (4.2)
whereW is now the strain rate potential angis the velocity of propagation of the void given b
v, & =ae K15 (6,n) (4.3)
Also theHRR(so called after Hutchinson [12] and Rice and Rgsen [26] results becomes applicable and
J=ae,0,K}I, (4.4)
in which case
%1+1
K, = (;J (4.5)
a&,o,l,

which on substituting (3.25) and (3.26) give

‘gﬁ J %+1~ Cgﬁ J %+1~
2= ——| & and —L=|——+| 7, (4.6)

& |\ ag,o, ! 1o} as,o,l

0~ 0" n 0~ 0" n

The strain gradient plasticity analysis has beemwsh[8] more appropriate for the analysis of
crack tip when micro-structural theory is beingdiséAs shown in [16] at the time neighbouring micro
voids start to coalesce, the initiation of macraetrbegins. This is buttressed by Kim and Lee [#HAd
using the earlier results of Lu et al [18] usednagtptic and numerical methods to analyses crack tip
phenomenon under creep. They concluded that HRBlgpis only valid for the limiting case of no
damage thus consideriltRR case as the behaviour of non-damage materialy dlse averred that in the
small region of crack microstructure the loadingapaeter based on fracture mechanics derived f&R
singular field might be invalid.

0

Macro-crack propagation is controlled by the disition of the void-area fraction in the crack-tip
region. Thus the analysis of the crack tip fisdldud be based on the SGP theory for a correcysisal

Experimental results of Elcsner et al [5] show thlastic strain gradients appear either because of
the geometry of loading or because of inhomogewafisrmation in the material. As noted also by &oll
and Kassner [28] large strain plasticity is reqdifer cavity growth, and it would appear that tleeity
wall must be a dislocation source. Thus the comiimitations lie with the continuum models. We are
quite aware of the works of Nguyen et al [21], Ovi@band Shih [22] based upon the work of Li and Wang
[17] which considered an asymptotic series for dhack tip and conjectured that additional termshie
series beside the dominant takes care of the micootural aspect of void growth. We feel that the
geometric aspect of the loading should be parhefanalysis. This dictates our preference forS@Gé
analysis.

The basic theory of strain gradient analysis ahisainvariants are available in the literature §6
10, 11, 7]. Our interest in this section is thackrtip field analysis. As noted in Wei and Hutdon [29]
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stresses ahead of a crack-tip in elastic-plastidssavith strain gradient effects could be morentta5s
times their counterparts in materials without stigtiadient fields - thelRRfield.

The crack tip fields of HRR derived above will beos/n below as limits of the crack tip fields
derived through the SGP analysis. The strain gradilasticity analysis recognizes the essencdearigth
parameter for the correct analysis of crack tiddeunder a micro-structural consideration which
experimental evidences [5, 20, 29] confirm. We ruwceed to give an SGP analysis of the crack tip
fields.

The following generalization of Rice’s path indegent J integral [25] exists for the deformation
theory solid [30, 31]. J={Wn-Tu,-q86,)ds (4.7)

Cc

il
whereC is any contour circling the crack tip originatiog the lower crack surface and ending on the upper
crack surface with s as the distance along theocontW is taken to be the energy density for the
deformation solid given by W(E,gm) =w ( E )+}/2/(£§1
(4.8)
where the elastic part of the strain energy dugetdatoric strains is included in w.is the bulk modulus
of the solid. Tis the traction vector acting on an element witlt normaln;, that is

T, =lo,+7,)n (4.9)
g ; is the couple stress traction vector #&hdis the linearized rotation vector. E is the effextstrain
guantity defined by E?=g2+1%x? (4.10)

where | is a material length quantity which becomessole additional constitutive parameter inttteory;
€. is regarded as a measure of the density of staligtstored dislocations ang, is a measure of the
density of geometrically necessary dislocationgdpoed by the strain gradient. The basic relakignss
applicable to this analysis are given as
6, =xe,u, ; \/\/(E):Laogo[EJ such that= =(£] (4.12)
: €,

n+1l g, &,

whereo ¢ is a measure of the tensile yield stress&nsl the associated elastic tensile strain at thess>
is the effective stress, g is the Levi-Civita symbol, y the displacement vector. This generalization

(o)

r

suggests thatv — asr - Owhich the case is indeed. In general, the solitigriane strain can be

written as [23]

e [

[Jij 17m, 'Tij]: ‘70[

%+1 X .
Uoé‘olnrj [g”(g"L vn),Xij(H,lL,n)],
(4.12, 4.13)

-
j [6,(6.50)n (8.4 0), (6.6 )]

where; = 6;; is the linearised curvature tensor so fiat= €, &; . m; is the unsymmetric deviatoric

g, r

couple stress tensor given by m =—=—+- (4.14)

The following relationships also apply, =31* é)(ii 22 =0 +17?m?, where

o,=,385s,, m =,/smm sothats, =%é£i; (4.15)

and é’i; =& —Emé'ij. In their finite element analysis Xia and Hutclins[30] found that elastic

N[

compressibility does not affect the most singuieids. Assuming the displacement generating treenst

Journal of Nigerian Association of Mathematical Physics, Volume 8 (November 2004)
Power law and coupled creep constrained under gmagiasticity analysis M. O. O
Oyesanya J. of NAMP



as the tip is approached are not irrotational floend that the dominant fields at the tip are atimnal in
such a way that the strain and not curvatures angrehnt at the crack tip so that by (4.10) and{}the
conclusion is reached that as in the HRR field.
W, S:L, £, - r’%“, g, - r (4.15a)
n+1
It becomes clear that the dominantly singular ctizkields are such thaéij ,5"- ,
% - 0, while }ij and ﬁ1ij approach zero. In the outer field where the HRRitkm is approached,

andf; are all finite as

& ,and g, , respectively approacf) ,and g, .As i - 0,the dominant singular fields are given by

ij? ij

(am,rm):ao(L]%“(am,ag) with (am,ag)=i(%]%( ((0).0(0)  (a16)

AN V343
where
f(B): 2n co 1 g +n_1co n+29,
n+1 n+1 n+1 n+1
) ) (4.17)
g(H):— " sin L e —n_lsin N*2g
n+1 n+1 n+1 n+1
Vet
with A= ﬁ(”—” | j (4.18)
2 \2nmr

It becomes obvious that we will be having the resuht for IL - 0,ie.|L <<1 the SGP theory applies

while for IL large the HRR result applies (see Figure 4). Traisslates to the very obvious conclusibp:

large we have the HRR results while fgrsmallf ,<<1 the SGP results is the more appropriate.
5.0 Conclusion

We have considered the constitutive behaviour amadkctip fields for materials undergoing
coupled creep constrained cavitations. A series fédationship was derived for the coupled mecimanis
and used in the crack-tip analysis. This relatignsbveals that at high stresses the power law arésn
is more appropriate than any other mechanism. \WWe shhow that the Kachanov-Rabotnov results are
special cases of our results and constitute anruppend for the analysis. We also show that in gree
constrained cavitations the power law can be usededuce diffusion mechanism results. We show
through the strain gradient plasticity theory ttied HRR results for crack tip fields hold only whire
continuum theory holds but fails under micro-stamat analysis.
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Figure 1b: Void growth on a grain boundary showtimg unit of

structure
Figure la: Void growth on graioundary
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Figure 2b: Void growth by power law
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Kachanov model
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Figure 3:f h small model and Kachanov mode
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Figure 4a: Distribution of normalised stress comgua defined in equation (4.12)
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Figure 4b: Asymptotic crack tip geometry
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