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Abstract 

 
The continuum damage theory of Kachanov and Rabotnov has 

limitations since the mechanical properties of a material (especially plastic 
deformation and fracture) are determined by its microstructure.  When a 
solid deforms at high temperature its microstructure may in some sense be 
altered- holes and cracks may nucleate and grow inside the solid by various 
mechanism controlled by diffusion and by power law creep or by a 
combination of these mechanisms.  Considering a coupled diffusion power 
law creep mechanism using a mechanistic model approximate analytical 
equations for the growth rate under multi-axial stress states are developed.  
These results are related to the power law mechanistic results in a power 
series like form, which are used to analyze the crack, tip fields for the coupled 
mechanism using a strain gradient plasticity analysis.  The Kachanov-
Rabotnov results and the HRR results are shown to be special cases of these 
results. 
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1.0 Introduction 

When a solid deforms at high temperature or when load bearing metallic components operate at 
temperatures in excess of approximately one third of the melting temperature consideration must be given 
to the effect of creep deformation and rupture. 

Rupture can be the consequence of thinning induced by large strains but it can also occur at small 
strains as the result of growth of damage in the metal.  Holes or cracks may nucleate and grow inside the 
solid; its grain size may increase or decrease; precipitate or depressoids within it may coarsen or dissolve; a 
substructure introduced by prior working may be destroyed or the microstructure may in some sense be 
altered. 

Also under the action of loads which are often considerably less than the fracture stress, and 
especially at elevated temperature many solids particularly ceramics gradually deform plastically, or creep 
until instabilities are created which lead to sudden, and often catastrophic, failure.  Clearly the design of 
components for engineering application must incorporate, and thus allow for this creep behaviour so that 
excessive plastic strain or premature fracture is avoided during the anticipated lifetime of the structure. 

Creep fracture is a complicated phenomenon [1,9].  Under creep conditions fracture most 
commonly occur by the growth and coalescence of voids, which lie on grain boundaries.  Voids usually 
grow by diffusion when they are small but as they become larger power law creep takes over as the 
dominant creep mechanism. Thus for a general treatment coupled mechanism like diffusion coupled with 
power law should be considered. 

Cocks and Ashby [4] and Oyesanya [24] have discussed the interesting creep fracture 
phenomenon under power law mechanism and coupled diffusion power law mechanism.  As a micro-
mechanical concept the result were compared with Rabotnov-Kachanov equations of continuum damage 
theory [15] and the inadequacy of continuum theory was highlighted. 

A relationship between power law mechanism and coupled mechanism involving power law will 
be very useful as we can now use results for the power law to predict the results for coupled mechanism. In 
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this paper multi-axial constitutive relation is proposed for steady state creep of polycrystalline materials 
undergoing grain boundary conditions under coupled mechanism of surface diffusion and power law. We 
assume that the overall stresses are in a range such that the void growth is creep constrained. 

We show that there exists a power series like relation between results for power law and coupled 
mechanism. We apply these results to study the influence of cavitations in the stress and the strain rate 
fields at the tip of a macroscopic crack. We use the strain gradient plasticity analysis since we recognize 
that continuum  

 
 
 
damage theory models lose their validity after a macro-scale crack arises. 
 
2.0  Models for the void growth and assumptions 

The results of Cocks and Ashby used in this paper are based on a mechanistic model shown in 
Figure 1.  We isolate a cylindrical element of material of diameter l (the void spacing) and grain size d 
centered on a grain boundary void of diameter 2rh. The surfaces of this are subjected to the stress fields 

321 σσσ ,,  as shown in Figure 2a, b, c.  The simple mechanism of surface diffusion and power law are 

shown in Figure 2.  
 Under surface diffusion mechanism the void becomes flatter and more crack-like and the void can 

be idealized as a penny shaped crack of constant width and semi-circular tip. Under this analysis we 
assume that  
(i) When no cavities are present the average steady state creep rate for the power law is 
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(ii) The steady state creep rate for the surface diffusion is 
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and Ω  is the atomic volume, D0 the surface diffusion coefficient, k the Boltzman constant, R the universal gas 
constant, T absolute temperature, Q the activation energy, V the activation volume.  Grain boundaries slide, so that the 
increase in volume of the slab containing the voids is taken up by a relative rigid body displacement of the grains on 
either side. 
(iii) Surface diffusion controls the early part of void growth while power law creep takes over as the 
voids become larger and the net section stress rises so that the coupled rate is simply the sum of the rates of 
two individual mechanisms. 
 
3.0 Constitutive law analysis 

As shown in [3.4] for only surface diffusion mechanism the rate of change of area fraction fh of 
holes on grain boundary is given by 
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The strain rate is given for this mechanism by 
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Here sδ  is the thickness of layer of material in which surface diffusion takes place sΦ  is the surface free 

energy 0σ  and 0ε  are creep constants.  For pure power law 
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is a parameter that measures effect of strain rate on void growth; r h is the radius of growing voids.  By 
assumption (iii) of section 2.0 the rate of change of area fraction of holes for the coupled diffusive power 
law is given by 
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That is equation (3.1) plus equation (3.4) which for convenience is written 
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Note that r = 0 depicts pure diffusion mechanism and r = n pure power law mechanism with index n. 
Equation (3.8) for f h large ( f h →1), b → β gives 
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and for small f h < < 1 we have 
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For pure power law P s = 0 and 
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where b → β for f h large.  This shows that the f h large results of (3.10) corresponds to the pure power law 
mechanism which is just the continuum damage theory result with f h = ω  as damage parameter.  For 
multi-axial case of power law mechanism the normalized strain rate is given by 
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the rate of change of area fraction of holes is given by 
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where sij is the deviatoric stress.  Equation (3.13) shows that for f h <<1 we have 
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For multi-axial case of the coupled diffusion power law we have in [23, 24]. 
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and 
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that is 
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Thus (n + 1)f h is a factor of change by (3.14) and (3.15). It thus follows that for multi-axial case 
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where p

ijε&  is for power law mechanism and dijε&  is the strain rate for surface diffusion mechanism.  From 

(3.16) and (3.20) and Figure 3 we deduce a global definition for f h small.  For the purpose of our 
exposition we define: f h small implies that f h ∈ ( 0, (n + 1)-1 ) for n-power law. 

Following Hutchinson [13] in the absence of micro-cracks the potential function can be taken as 
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for which the strain rate is given by  
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Substituting (3.22) in (3.21) gives  ij
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From the damage theory [15]. 
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so that for ω = 0 (no damage) 
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For  ω ≠ 0, ω <<1 (3.24) can be written as 
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That is   ( )[ ]{ } hotnn nijij ++++= ωωεε 111&    (3.27) 

One expects that in the presence of micro-cracks and damage 
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Noting (3.23) we can write this result as  
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4.0 Crack tip fields 

We note as in [23] that under surface diffusion mechanism the void becomes flatter and more 
crack-like so that the void can be idealized as a penny-shaped crack of constant width and semi-circular tip. 
Thus for the crack-tip in the power law creep mechanism zone the singularity fields following Hutchinson 
[12], Rice and Rosengren [26] can be written as 
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where ( )ijij
~,~ σε  are non-dimensional field quantities and εij is given by (3.21). In this case Rice’s J-integral 

[25] characteristics also apply so that ( )∫ −= −
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where W is now the strain rate potential and v i is the velocity of propagation of the void given by 
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Also the HRR (so called after Hutchinson [12] and Rice and Rosengren [26] results becomes applicable and 
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which on substituting (3.25) and (3.26) give 
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The strain gradient plasticity analysis has been shown [8] more appropriate for the analysis of 
crack tip when micro-structural theory is being used.  As shown in [16] at the time neighbouring micro-
voids start to coalesce, the initiation of macro-crack begins.  This is buttressed by Kim and Lee [14] who 
using the earlier results of Lu et al [18] used asymptotic and numerical methods to analyses crack tip 
phenomenon under creep. They concluded that HRR problem is only valid for the limiting case of no 
damage thus considering HRR case as the behaviour of non-damage material.  They also averred that in the 
small region of crack microstructure the loading parameter based on fracture mechanics derived from HRR 
singular field might be invalid.   
 

Macro-crack propagation is controlled by the distribution of the void-area fraction in the crack-tip 
region.  Thus the analysis of the crack tip field should be based on the SGP theory for a correct analysis. 

Experimental results of Elcsner et al [5] show that plastic strain gradients appear either because of 
the geometry of loading or because of inhomogenous deformation in the material.  As noted also by Tolle 
and Kassner [28] large strain plasticity is required for cavity growth, and it would appear that the cavity 
wall must be a dislocation source.  Thus the common limitations lie with the continuum models.  We are 
quite aware of the works of Nguyen et al [21], O’Dowd and Shih [22] based upon the work of Li and Wang 
[17] which considered an asymptotic series for the crack tip and conjectured that additional terms in the 
series beside the dominant takes care of the micro-structural aspect of void growth.  We feel that the 
geometric aspect of the loading should be part of the analysis.  This dictates our preference for the SGP 
analysis. 

The basic theory of strain gradient analysis and all its invariants are available in the literature [6, 8, 
10, 11, 7].  Our interest in this section is the crack-tip field analysis. As noted in Wei and Hutchinson [29] 
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stresses ahead of a crack-tip in elastic-plastic solids with strain gradient effects could be more than 2.5 
times their counterparts in materials without strain gradient fields - the HRR field. 

The crack tip fields of HRR derived above will be shown below as limits of the crack tip fields 
derived through the SGP analysis.  The strain gradient plasticity analysis recognizes the essence of a length 
parameter for the correct analysis of crack tip fields under a micro-structural consideration which 
experimental evidences [5, 20, 29] confirm.  We now proceed to give an SGP analysis of the crack tip 
fields. 

The following generalization of Rice’s path independent J integral [25] exists for the deformation 
theory solid [30, 31].   ( )∫ −−=
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where the elastic part of the strain energy due to deviatoric strains is included in w. κ is the bulk modulus 
of the solid.  Tj is the traction vector acting on an element with unit normal n i, that is 
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q j is the couple stress traction vector and θ i is the linearized rotation vector. E is the effective strain 
quantity defined by    2222
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where l is a material length quantity which becomes the sole additional constitutive parameter in the theory; 
εe is regarded as a measure of the density of statistically stored dislocations and eχ  is a measure of the 

density of geometrically necessary dislocations produced by the strain gradient.   The basic relationships 
applicable to this analysis are given as  
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where σ 0 is a measure of the tensile yield stress and ε0 is the associated elastic tensile strain at that stress, Σ 
is the effective stress, e ijk is the Levi-Civita symbol, u k the displacement vector.  This generalization 

suggests that 
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where χij = θi,j is the linearised curvature tensor so that kjliklij e ,εχ = . mij is the unsymmetric deviatoric 

couple stress tensor given by  
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and .ijmijij δεεε −=′   In their finite element analysis Xia and Hutchinson [30] found that elastic 

compressibility does not affect the most singular fields.  Assuming the displacement generating the strains 
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as the tip is approached are not irrotational they found that the dominant fields at the tip are irrotational in 
such a way that the strain and not curvatures are dominant at the crack tip so that by (4.10) and (4.11) the 
conclusion is reached that as in the HRR field. 
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ijij σε As ,l
r 0→ the dominant singular fields are given by 
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with       
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It becomes obvious that we will be having the result that for 10 <<→
l

r
.e.i,

l

r
 the SGP theory applies 

while for 
l

r
 large the HRR result applies (see Figure 4). This translates to the very obvious conclusion: f h 

large we have the HRR results while for f h small f h<<1 the SGP results is the more appropriate. 
 
5.0  Conclusion 

We have considered the constitutive behaviour and crack tip fields for materials undergoing 

coupled creep constrained cavitations. A series like relationship was derived for the coupled mechanism 

and used in the crack-tip analysis. This relationship reveals that at high stresses the power law mechanism 

is more appropriate than any other mechanism. We also show that the Kachanov-Rabotnov results are 

special cases of our results and constitute an upper bound for the analysis. We also show that in creep 

constrained cavitations the power law can be used to deduce diffusion mechanism results. We show 

through the strain gradient plasticity theory that the HRR results for crack tip fields hold only when the 

continuum theory holds but fails under micro-structural analysis.  

 
 
 
Acknowledgement  

The author wishes to acknowledge the hospitality at ICTP during the author’s visit when this paper was prepared. 
 
 

 
 

 
 
 
 
 
 

∞
2σ  

∞σ  

3σ  3σ  hr2  



Journal of Nigerian Association of Mathematical Physics, Volume 8 (November 2004) 
Power law and coupled creep constrained under gradient plasticity analysis      M. O. O 
Oyesanya J. of NAMP 

 
 
 
 
 
 
 
 
 
 
 
      Figure 1b: Void growth on a grain boundary showing the unit of 
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Figure 2a: Void growth by Surface Diffusion Mechanism 
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Figure 2b: Void growth by power law 
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             Fig. 2c: Void growth by coupled surface diffusion and power law creep 
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Figure 2c: Void growth by coupled surface diffusion and power law creep 
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Figure 3: f h small model and Kachanov mode 
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Figure 4a: Distribution of normalised stress components defined in equation  (4.12) 
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Figure 4b: Asymptotic crack tip geometry 
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