
Journal of the Nigerian Association of Mathematical Physics, Volume 8, (November 2004) 
Cylindrical shells under step loading   A. M. Ette   
 J. of NAMP 

Journal of the Nigerian Association of Mathematical Physics, 
Volume 8 (November 2004) 

 
On the dynamic buckling of stochastically imperfect finite cylindrical shells under step 

loading 
 

A. M. EtteDepartment of Mathematics and Computer Science 
Federal University of Technology 

Owerri, Imo State, Nigeria 
e-mail: onimonsette@yahoo.com 

 
Abstract 

 
The dynamic buckling load of stochastically imperfect finite right 

circular cylindrical shells subjected to step loading is determined by means of 
regular perturbation procedures .The imperfection is assumed to be a 
Gaussian random function of position and consequently is homogeneous. 
The result obtained is implicit in the load parameter and is asymptotically 
valid for small magnitude of the random imperfection, which is itself taken as 
the first term in a Fourier sine expansion. 
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1.0 Introduction  

There is already in existence an enormous wealth of literature on stochasticity as applied to the 
analyses of the buckling of elastic structures.  A few of the earlier ones include those in the references [1-5] 
and the references there cited.  The present exposition is therefore a contribution to a vast avalanche of 
knowledge that needs further expansion. Right circular cylindrical shells are elastic structures whose 
imperfection-sensitivity and static buckling under various time independent loading conditions have been 
exhaustively analyzed by various researchers including those cited in the references [6-8].  However most 
of these earlier studies concentrated primarily on analyzing the stability of the structures statically. Perhaps 
one of the earliest analytical studies to address the problem dynamically was that by Lockhart and Amazigo 
[9].  In all, there have been by far more investigations on the static stability of the structures than on 
dynamic stability and our present analysis is therefore aimed at enquiring into an area of relative infrequent 
investigation. 

 
2.0 Karman-Donnell Equations 

A cylindrical shell is characterized by its outward radial displacement W(X,Y,T) and airy stress function 
F(X,Y,T) where X and Y are the axial and circumferential spatial variables respectively while T is the time 
variable .The membrane stress resultants NX ,NY, and  NXY are given in terms of the airy stress function as 
(see Figure 1 and Figure 2) 

NX=F,YY  ,NY=F,XX  ,NXY= -F,XY 

where a subscript following a comma indicates partial differentiation.  We shall assume an initial stress-
free random imperfection ( )YXW , which is in fact an initial outward normal displacement .The relevant 

compatibility equation and equilibrium equation [9] as amended to dynamic setting are respectively given 
by 
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where E  is the Young’s modulus, h is the shell thickness, R is the  radius,ρ is the mass per unit area, D is 

the bending stiffness given by  D= ( ) ,
112 2

3

υ−
hE

   υ is  the  Poisson’s ratio,  ( )TP   is the time dependent 

loading history, 4∇  is the two –dimensional biharmonic operator given by 
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while S  is the bilinear operator 
 
 
 
 

    S(P,Q) = P,XXQ,YY+P,YYQ,XX-2P,XYQ,XY  (2.4) 
We now introduce the following nondimensional quantities: 
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where L is the shell length and ∈ is a small deterministic amplitude of the random imperfection function 

( ).y,xw We shall consider homogeneous initial displacement and velocity and shall neglect both axial and 

circumferential inertia terms.  We shall assume simply supported boundary conditions and shall neglect the 
boundary layer effects by assuming that the pre- buckling displacement is constant.  Thus as in  [9] we let 
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The first terms in (6a,b) are the pre-buckling approximations.  The parameter α takes the value α=1 if 
pressure contributes to axial stress through end plates while at the same time it takes the value α=0 if 
pressure acts laterally. We shall assume a step loading condition where 
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On substituting (2.6a,b) and (2.7) into (2.1) and (2.2), using (2.5) and simplifying we get 
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The procedure to be adopted shall include first determining a uniformly valid asymptotic expression of the 
normal (radial) displacement w(x,y,t) given the Gaussian random  stress-free initial displacement ( )yxw ,  

with its known statistical  characterizations. The random nature of ( )yxw , automatically confers some 

element of randomness on the displacement w(x,y,t) whose statistical characterizations are evaluated once  
those of  ( )yxw , are  known.  We next determine the autocorrelation of w(x,y,t) and also determine  the  

mean square displacement ( )tyx ,,2∆  as a function of space and time variables.  We follow this up by 

determining the maximum mean square displacement. Lastly we derive an expression for determining the 
dynamic buckling load λD, which is here defined as the maximum load parameter for which the mean 
square displacement remains bounded for all time t > 0. 
2.1 Classical Theory 
 The classical buckling load λc was obtained in [9] by disregarding the imperfection and solving the 
associated linear problem assuming 
    ( w,f ) = ( amk,bmk) sin ( ky+φmk  ) sinmx.    (2.12a) 
 
The relevant compatibility and equilibrium equations are respectively given by 
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The result as obtained in [9] is 
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      .2ξζ n=    (2.13b) 

In the above, n taken as an integer, is the critical value of k.  The associated displacement and Airy stress 
function are given by 
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2.2. Dynamic Theory 
 Following the report in [9], we shall assume 
    ( ) ,sinsin, ynxayxw =     (2.14a) 

where a  is a random parameter whose statistical properties are easily evaluated once those of ( )yxw ,  are 

known.  We shall now let 
     12 <∈<<∈=  0  ;  tτ    (2.14b) 

 and  w(x,y,t) = V( x,y,t,τ,∈).  Thus we have  
     w,t=V,t+∈2V,τ  ;   w,tt= V,tt+2∈2V,tτ  +∈4V,ττ  (2.14c) 
We shall now let 
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We now substitute (2.14b) -(2.15) into (2.8) and (2.9) and get the following sequence of equations 

    ( ) ( )         ,0,1, )1(2)1()1()1()1( =+−∇= xxVfVfL ξ   (2.16a) 
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All through the analysis, we shall let 
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The subscript r shall indicate r-multiples of n-circumferential waves such as for example in the expression; 
”sin rny sinmx” Integration with respect to x shall have 0 and π as the lower and upper limits respectively 
while that  
 
 
with respect to y shall have 0 and 2π as the lower and upper limits respectively. 
 
3.0 Solution of first order perturbation equations 
Here we shall solve (2.16a,b) by assuming (2.20) in this case where I = 1.Since w (x,y) is linearly related to  

(1)  fV and)1(  and since w (x,y), as given in (2.14a), has no cosine component we are sure that 
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On substituting (3.1) into (2.16a) and simplifying we get 
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where (3.2a) is true when p = m,q = n for fixed m and  n.  Of course when m = 1, r = 1, we have  
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We shall have cause to use (3.2b) later.  We now substitute (3.2a) into (2.16b) and see that it is only when 
m = 1 = r that a non-vanishing solution exists.  We equally simplify the resultant substitution and get 
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Generally we shall let 
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Thus 22)1(
1 µµ =  where m = r = 1. It is possible that for some values of the parameters involved, we may 

have cases where .0
2)( ≤m

rµ  We are however not interested in such cases as they may not lead to buckling in 

the manner suggested in this paper. Thus, we shall assume that for all m and r, .0
2)( >m

rµ   With this 

assumption in mind we now solve (2.23a-d) and get 
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4.0 Solution of second order perturbation equations 
 We now substitute the relevant terms on the right sides of (2.17a,b) and simplify to get 
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We shall now assume (2.20) for I = 2 and substitute same into  (4.1a) and simplify to get 
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all valid for r = 2 and m odd.  The above was obtained by multiplying (4.1a) by cosrnysinmx and carrying 
out the necessary simplification.  We likewise multiply (4.2a) by sinrnysinmx and simplify to get 
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We now multiply  (4.1b) by cosrnysinmx and simplify, and get 
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We note that (4.3a) is valid for r = 2.  Similarly we multiply (4.1b) by sinrnysinmx and simplify to get 
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The solution of (4.4a) will certainly depend on the homogeneous initial conditions of (4.4b) and so, without 
solving explicitly for )2(

2rV  we know that on the final analysis we shall eventually have  



Journal of the Nigerian Association of Mathematical Physics, Volume 8, (November 2004) 
Cylindrical shells under step loading   A. M. Ette   
 J. of NAMP 

      ( ) .0,)2(

2 =τtV r       (4.5a) 

The result of (4.3a-e) is certainly non-vanishing and we expect that the non-vanishing displacement 
corresponding to this order of perturbation will be of the form 
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It has been shown [6] that displacements in the shape of the imperfection have dominant effect on the 
buckling load of the structures. Though this finding was primarily shown to hold for the case of static 
buckling, it also holds for dynamic buckling.  Consequently, since (4.5b) is not in the shape of (2.14a), we 
shall henceforth neglect it.   
 
5.0 Solution of Third order perturbation equation 
Having neglected V (2), we now substitute for terms on the right hand sides of (2.18a,b), using (4.5c) and 
simplify to get 
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We now multiply (5.1a) by sinrny sinmx and simplify to get 
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valid for r = 1, m odd.  Similarly when r = 3 and m odd we have from the same multiplication above 
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In the same token we multiply (5.1a) by cosrny sinmx and simplify to get 
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On multiplying  (5.1b) by sinrny sinmx and simplifying using (31a,b) we get 
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When r = 3,we get the following from the same multiplication above 
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We now multiply (5.1b) by cosrny sinmx,using (5.2c) and observe that because of the ensuing homogeneous 
initial conditions  associated with ( )τ,)3(

1 tV r  we shall eventually have  
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We shall now let 
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The following simplifications shall be useful later: 
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Similarly we have the following simplification 
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If we substitute in (5.3a)-(5.5d), using (3.4a), (4.2a,b) and (5.6), we simplify to get 
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Yet some other simplifications of (5.10a) and (5.11b) are necessary thus: 
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and 
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When m = 1, we ensure a uniformly valid solution in (5.12a) by setting to zero the coefficients of cosµ t 
and sinµ t and getting 
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where ϕ1 is the value of ϕm at m = 1.  We have no intention of solving for γ1(τ) and δ1(τ) in full from (5.13) 
because we can always extract every necessary information needed from these two functions direct from 
(5.13). For example, by determining  (41) at τ = 0, we have  
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The solution of the remaining equation in (5.13a) subject to (5.10b,c) is 
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where      mif ,  C mif  C 1011 ==≠=  and  

( ) ( )
( )













−









++





−







 +==
22

2
3

2
3

2
1

3

3

3
8

15

4

9

4

5
0

µµ
µλ

µ
λϕδ

)m(

j

)m(

jm 1)m(

j

m m)m(

BB
B

 C
BB

)(Q    ,
Qa  

 
 
 

( ) ( ) ( ) ).(00
9844

)(3
22)(

3

22)(

3

odd       , 
  

 (m)
3 m

BBB
m

j

m

j

∀=












−
+

−
−− γ

µµµµ
 (5.15b-d) 

Similarly, the solution of (5.12b-d) subject to (5.11b,c) is 
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So far we summarize the asymptotic expression for normal (radial) displacement as 

         ( ) ( ) ( ) ∑
∞

=
∈++∈+=∈∈

,...5,3,1

4)3(

23

)3(

21

3)1(

21 .0sin3sinsinsinsin,,,,
m

mxynVynVxynVtyxV τ  (5.17) 

We note that (5.17) is uniformly valid.  For the purpose of further analysis we now ‘extract’ the random 
imperfection amplitude a  by performing a Taylor series expansion of each function of τ about τ = 0 in 
(5.17), using (2.14b), and retaining an adequate number of terms necessary for the next line of analysis.  
Thus we get 
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Now ( )yxw ,  is a random function whose mean < ( )yxw , > is considered given and this can be written as 

xy na  )x,y(w sinsin><=><    (5.18d) 
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π π
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and where the angular  bracket <…> denotes the Mathematical expectation.  Again the autocorrelation wR  

of the imperfection function [5,10-12] is given by 
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( ) ( ) ( ){ } ( ) ( ){ }>>++<−++><−=< ηζηζηζ yxwyxwyxwyxwRw ,,,,,  (5.19a) 

We shall however consider a zero-mean Gaussian statistic for ( )yxw ,  and so we have 
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so that   ( ) ( ) ( ) >++<= ηζηζ yxwyxwRw ,,,  (5.19c) 

The mean square imperfection is ( )0wR  is given by 
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We shall, for simplicity of further analysis, assume 
    ynxAR 2

1 sinsinn w
=     (5.20a) 

and note that within the range 0 < x < π, we have .0>wR   Here Ain are positive constants.  Thus we have 
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In the same token  [5,8,10-13], the autocorrelation WR  of the normal displacement is  
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The mean square displacement ( )t,y,x2∆  is obtained by setting ttt ==== 21;0    ηζ  and getting 
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On substituting (5.18a) into  (5.21b) and simplifying we get 
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As noted in [8,13], the two terms in powers of ∈2 and ∈4 in (5.22) shall be adequate.  In establishing the 
initial post dynamic buckling phenomenon associated with these structures. We shall now determine the 
maximum mean square displacement ( )aaaa tyx ,,22 ∆=∆  where xa, ya ,ta are the critical values of the 

associated variables at maximum  mean square displacement. The conditions for maximum mean square 
displacement are  
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The other condition, to order ∈2, is 
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We shall let xa, ya, ta and τa be the critical values of the associated variables at maximum displacement and 
now let 

ta = to + ∈2t2  +…    (5.25a) 
From (5.23a,b), we get  
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From (5.24), we get, 
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We know [8,13,14] that   
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The maximum normal displacement Va from (5.17) is 
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In the same token the maximum mean square normal displacement ( ) aaaaa tyx τ,,,22 ∆≡∆ is, using (5.22) 

and (5.25b-d), 
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where, δ1m is the Dirac-delta function.  We note that each of B, (m)
6Q and )(

5
)(

4 , mm QQ depends on the load 

parameter λ.  We shall however rewrite (5.27a) as 
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Where c1 and c3 are the obvious respective coefficients of ∈2 and ∈4 as in (5.27a) and are thus dependent 
on λ through (m)

6Q ,)(
5
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4 , mm QQ and B.  The dynamic buckling load λD  [8,13] is usually obtained from the 

maximization 

      0
2

=
∆ ad

dλ
   (5.29) 

which is determined at λ = λD. However, before invoking the maximization in (5.29), we first [8,13] have 
to reverse the series (5.27a, 5.28) by expressing the least order of ∈ in the following series 
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Each di and ci (i =1,3) is a function of λD.  The maximization (5.29) is now easily executed through (5.30a) 
to yield, after some simplification 
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which is evaluated at  λ=λD.  On further simplifying  (5.31), we get 

( )∑
∞

=
=++∈

,...5,3,1

)(
6

)(
5

)(
4

22 1
2

sin
3

64
m

mmmin m
QBQQB

A π
π

.  (5.32)  

Equation (5.32) is understood to be evaluated at λ=λD 

 

 

 
 

6.0 Analysis of the result 
The result (5.32) is asymptotic in nature and is valid for small values of ∈.  Each of the terms in 

(5.32) is dependent on the load parameter λD and the specific value of λD that satisfies (5.32) for each value 
of ∈ is the dynamic buckling load.  We expect the dominant term to come from the case where m = 1 and 
for this we have 
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as the equation to be satisfied  by λD.  For convenience we may set A1n = 1.  Since Donnell-type of 
equations are used, it is necessary that n > 5. 
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Figure 2: Cylindrical shells showing components of (a) Displacements  (b) Stress Resultants and (c) Stress couples 
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