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Abstract

The dynamic buckling load of stochastically imperfect finite right
circular cylindrical shells subjected to step loading is determined by means of
regular perturbation procedures .The imperfection is assumed to be a
Gaussian random function of position and consequently is homogeneous.
The result obtained is implicit in the load parameter and is asymptotically
valid for small magnitude of the random imperfection, which isitself taken as
thefirst term in a Fourier sine expansion.

pp 35 - 46

1.0 Introduction

There is already in existence an enormous wealtliteshture on stochasticity as applied to the
analyses of the buckling of elastic structuresfev of the earlier ones include those in the refees [1-5]
and the references there cited. The present dipos$s therefore a contribution to a vast avalanoff
knowledge that needs further expansion. Right G@rcaylindrical shells are elastic structures whose
imperfection-sensitivity and static buckling underious time independent loading conditions havenbe
exhaustively analyzed by various researchers iimduthose cited in the references [6-8]. Howevesim
of these earlier studies concentrated primarilapnalyzing the stability of the structures statizaterhaps
one of the earliest analytical studies to addresgptoblem dynamically was that by Lockhart and aige
[9]. In all, there have been by far more invedima on the static stability of the structuresntten
dynamic stability and our present analysis is tfieeeaimed at enquiring into an area of relativieeiquent
investigation.

2.0 Karman-Donnell Equations
A cylindrical shell is characterized by its outwartlial displacement W(X,Y,T) and airy stress fimtt
F(X,Y,T) where X and Y are the axial and circumfsial spatial variables respectively while T is thrae
variable .The membrane stress resultantsNN, and Ny are given in terms of the airy stress function as
(see Figure 1 and Figure 2)
Nx=F,vvy Ny=F,xx ,Nxy= -F,xvy
where a subscript following a comma indicates phdifferentiation. We shall assume an initialess-

free random imperfectiofW(X,Y)which is in fact an initial outward normal disptacent .The relevant
compatibility equation and equilibrium equation g amended to dynamic setting are respectivelgngiv
by

Lo —EW,XX:—S W, Aw+W |, (2.1)
Eh R 2
and PW,. +D OW +%F,XX:S(W +W,F )-P(T), 2.2)
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where E is the Young's modulusjs the shell thickness, R is the radiuis the mass per unit area, D is

. . . Eh?® . . L= . .
the bending stiffness given by D=—(—), v is the Poisson’s ratioP (T) is the time dependent
12(1-0°

loading history[] * is the two —dimensional biharmonic operator given by

N LA
0*= +— 2.3
(axz OYZJ 23)
while S is the bilinear operator
S(P,Q) = BxQ.y+PyvQuxx-2PxyQuxy (2.4)
We now introduce the following nondimensional quantities:
X Y W w
X= |y__ IDW:_I W:—,
L R h h
Tn® D1 _
p L’RP 1212 (1-v?)
t= > yA=—— A=——F17—7—, (2.5)
L D 7R h
L? A’ h
=, =, H =—,
é ang (&) (1+ é )2 R

wherelL is the shell length and is a small deterministic amplitude of the random imperfactimction
W(X, y). We shall consider homogeneous initial displacement and welail shall neglect both axial and

circumferential inertia terms. We shall assume simply supgdrdundary conditions and shall neglect the
boundary layer effects by assuming that the pre- bucHisgjacement is constant. Thus as in [9] we let

_ 212
F=-1pr(x=lgye]s—EME ¢ (2.6a)
2 2 TR (1+¢& )
5(1—;auj
wW=——=_Z+hw (2.6b)
Eh

The first terms in (6a,b) are the pre-buckling appnations. The parameter takes the value=1 if
pressure contributes to axial stress through eateglwhile at the same time it takes the vaie® if
pressure acts lateraljWe shall assume a step loading condition where

_ 1T>0
P(T)= . 2.7
( ) {O,T <0 @7
On substituting (2.6a,b) and (2.7) into (2.1) ad@), using (2.5) and simplifying we get
Of -(1+&)w,, =-H (1+&)? §(W,%W+Dv_vj, (2.8)
Fw-K (& )f, .+ Ea (we O ), +& (wer O ),W}-HK (£)s(weiw,f ) (2.9)
O<x<m , O<y<2rm (2.10)
w=w, =f=1f, =0 at x=0,77, (2.11a)
w=w, =0at t= 0, (2.11b)

2 2
where* =[ 2 + g 9
ox: oy’

j ; g(F)’Q)zP’xxQ'yy-'-l:)’yyQ’><><_2|:>1><yQ1><y'
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The procedure to be adopted shall include firstmheining a uniformly valid asymptotic expressiontioé
normal (radial) displacememi(x,y,t)given the Gaussian random stress-free initiqjldisementw(x, y)

with its known statistical characterizations. Tite@dom nature oﬁ(x,y)automatically confers some
element of randomness on the displacemégrty,t) whose statistical characterizations are evaluates
those of W(x,y)are known. We next determine the autocorreladbw(x,y,t)and also determine the
mean square displacememz(x, y,t) as a function of space and time variables. Wievothis up by

determining the maximum mean square displacemerstht. we derive an expression for determining the
dynamic buckling load\p, which is here defined as the maximum load paramtr which the mean
square displacement remains bounded for all timé.
2.1 Classical Theory

The classical buckling loadl, was obtained in [9] by disregarding the imperfattand solving the
associated linear problem assuming

(w,f) = (ankbm sin (Ky+¢ ) sinmx. (2.12a)

The relevant compatibility and equilibrium equasare respectively given by

O*f -(1+&)%w,, =0, (2.12b)
O'w-K (&)f,, +4 {%W,xﬁf w,w}:o. (2.12¢)
The result as obtained in [9] is
._(1+& )k (£)
1 _
/] _ ( +Z) (1+Z )Z ,
¢ %+Z (2.13a)
J=n?¢. (2.13b)

In the aboven taken as an integer, is the critical valukofThe associated displacement and Airy stress
function are given by

1+¢

2.2 Dynamic Theory
Following the report in [9], we shall assume
w (x,y)=asinxsinny, (2.14a)
where a is a random parameter whose statistical propeatie®asily evaluated once thosev_m(fx, y) are
known. We shall now let

(w,f )={1, (ﬁj a,sin(ny+gq, )sinx}. (2.13c)

r=[Fft; 0<0<<1 (2.14b)
and w(x,y,t) = V( x,y,15,2). Thus we have
WEV OV 3 W= Vot 200V, +0%V, o (2.140)
We shall now let
V i 1tl y had V(I) t !tl 1 i
Gy Lni_ o[V (bn) (2.15)
f(xytr,0) = FOxyt,r1,)
We now substitute (2.14b) -(2.15) into (2.8) an®)2and get the following sequence of equations
Lo (fove)=Tfo-(1+&)2V,2 =0, (2.16a)
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(i )=v vk () 180 Dveev |

- 9%
= ”[z +EW ,W}

LO(f@v® )=-H (1+£ )4 Z5(veve )+s (V‘l),v_v)}, (2.17a)

1
2
(ve,to )+s(fow)}, (2.17b)
1_
2°
5

(2.16b)

M O(f @v @)=-HK (&) {5
<1>(f(3>v<3> - 1+<( {
+

M @ (f CRVE )=—HK (& ){ (V o f @ (f @ ) (V @ § o ) —2v,% (2.18b)
VO=vO=fO=f Y=0at x=0, mi=123 (2.19a)
VO (xy00)=0,i=123A, V¥ (xy0,0,)=0, k=12A  (2.19b)
V 9(xy0,0)+VED(xyp0)=0, s=345,..., 0<x<z, 0<y<2r (2.19c)
All through the analysis, we shall let

VOxytr)) & |(VY 2% .
[f“)(x,y,t,r) _p%‘il fo cosay f o singy sinmx (2.20)

The subscript r shall indicatemultiples ofn-circumferential waves such as for example in thgression;

"sin rny sinmX Integration with respect ta shall have 0 and as the lower and upper limits respectively
while that

(Vvov @)+s ( v_v)} (2.18a)

with respect t shall have 0 andrRas the lower and upper limits respectively.

3.0 Solution of first order perturbation equations
Here we shall solve (2.16a,b) by assuming (2.2@8higncase where= 1.Sincew (x,y) is linearly related to

V®nd f® and since W(x,y), as given in (2.14a), has no cosine componegat are sure that
V ®and f @ will take the forms

VA o (VO

( ¢ (1)) Z ( ¢ (1)]5”‘ pysingy. (3.1)

On substituting (3.1) into (2.16a) and simplifyiwe get
w__(1+&)’'m°V Y

f o= W m=123.A (3.2a)
where (3.2a) is true whem= m,q = nfor fixedmand n. Of course when m 1, r = 1, we have

coo_ (1)
We shall have cause to use (3.2b) later. We ndstiute (3.2a) into (2.16b) and see that it isyamhen
m = 1 =r that a non-vanishing solution exists. We equsillyplify the resultant substitution and get

(3.2b)

V S tuV §?=15(%+n25j. (3.3a)

V2 (00=V2(00)=0 (3.3b)
2 _ 27 \2 A ’ _ g 2

U _[(1+n5) +(—1+n25j A(2+nf)]. (3.3¢)

Generally we shall let
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WYz, 2| (1 22\ A’ 2_ m'a 2
(/1r )_,ur [(m +(nr) {) +(m2+(nr)2{J /l( > +(nr) E)ﬂ (3.3d)

Thus ,uf)zz M wherem=r = 1. It is possible that for some values of theapeeters involved, we may

m? _ _ -
have cases Wher,él(r <Q We are however not interested in such cases gsrthg not lead to buckling in

the manner suggested in this paper. Thus, we slalime that for all m and ;uﬁ’“>2> OWith this
assumption in mind we now solve (2.23a-d) and get
V O(t, 7)=6,(r ) cost + y, (1) sinut + aB, (3.4a)

6,(0)=0, 5(0)=0, B= 2 (3.4b-d)
27\2 A _ a 2
@+n{)+(1+ﬁfj A(2+”{]

4.0 Solution of second order perturbation equations
We now substitute the relevant terms on the sghds of (2.17a,b) and simplify to get

LO(V®, f@)=-Hn? (1+¢ )2{ %vgﬁav ;1;} (cos2x +cos2ny), (4.1a)

MO @ f@)=-HKn{V @ f 9+af ©}(cos2x+cos2ny ) (4.1b)

We shall now assume (2.20) for 2 and substitute same into (4.1a) and simpdifget

1 40 —
4Hn2(1+£)2(v T\ <1>]
2 21 21 _ (1+ g()ZrT.IZ\/Z(:lZ)

mzz(m? + 4n’é f (m? +4n?& ) 2

2m) — _
f12 -

(4.2a)

o

where f@= 3 fem (4.2b)

m=135,...
all valid forr = 2 andm odd. The above was obtained by multiplying (4 dagosrnysinmxand carrying
out the necessary simplification. We likewise npljt (4.2a) bysinrnysinmxand simplify to get
2 2 )
fo SV o (4.2¢)
(m*+(m)*§)°
We now multiply (4.1b) by cosrnysinmx and simpli&nd get

VEFUTVE=RVOFRV Y, (4.32)
v2(00)=v{(00)=0 (4.3b)
4a(nA)*H 1 2ny
=- + , 4.3c
R mrr {(1+nzf)2 (m?+4n2&)? (#.3¢)
4a(nA)’H 1 m’
=- + 4.3d
R mrT {(1+n2£)2 (m2+4n2g‘)2 (4-3d)
We note that (4.3a) is valid for= 2. Similarly we multiply (4.1b) bginrnysinmxand simplify to get
m, 2 -—
Vvt u™ vy =0o, (4.4a)
vV 2(00)=V 2 (00)=0. (4.4b)

The solution of (4.4a) will certainly depend on timmogeneous initial conditions of (4.4b) and sitheut
solving explicitly forV @ we know that on the final analysis we shall evetiythave
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vV @(t7)=0. (4.52)

The result of (4.3a-e) is certainly non-vanishingd ave expect that the non-vanishing displacement
corresponding to this order of perturbation willdfehe form

V@ (x,yt,r)= DIRAL (t,7) cos2nysinmx (4.5b)

m=135,..

It has been shown [6] that displacements in theehaf the imperfection have dominant effect on the
buckling load of the structures. Though this firgdiwas primarily shown to hold for the case of stati
buckling, it also holds for dynamic buckling. Censently, since (4.5b) is not in the shape of @)14e
shall henceforth neglect it.

5.0 Solution of Third order perturbation equation
Having neglected/ ®, we now substitute for terms on the right hanesidf (2.18a,b), using (4.5c) and
simplify to get

L¥(ve, fe)=0, (5.1a)
Mo, 10)=-H S (v p rar o) [(ar s wi s arim)
m=135,..
{sin3nycos(m-1)x +sinnycos(m+1) x} +(4n’m-mn? - an* ) (5.1b)

{sin3nycos(m+1) x+sinnycos(m-1)x }|-2v &,

We now multiply (5.1a) bginrny sinmxand simplify to get
1+& Pm?f @
=l .22
valid forr = 1,modd. Similarly whem = 3 andm odd we have from the same multiplication above
1+&)’m?*v ¥
f (233) == (‘m2+)9n2§t ’223 ) (52b)
In the same token we multiply (5.1a) by cossimymxand simplify to get
@ —_ (1+¢ fmv @
Ir (m2+(nr)2§t)2
On multiplying (5.1b) by sinrnginmxand simplifying using (31a,b) we get
VOruV ==, S (VO T +at e )vou(gsin-ycosut ) (5.3a)

m=135,..

sinnysinmx

(5.2¢)

v(00)=0, v (00)+v& (00)=0 (5.3b,C)

W, = (4n2 +m’n’ +4n’m ) L 1)+ (4n2m— m’n? — 4n2) 1 (5.3d)

2m+1 2m-1
HK
r,=— 5.4e
e (5.4e)
Whenr = 3,we get the following from the same multiplicatabove
VEAuV e =or, Yo, (vafinear i) (5.52)
m=135,..

v@(00)=0, Vv&(0,0)=0, (5.5b,c)

6,=m| |1+ 1 (4n2 +m’n® +4n’m ) + (4n2m— m’n® - 4n’ ) N (5.5d)
2m-1 2mi
We now multiply (5.1b) bygosrny sinmx,usingb.2c) and observe that because of the ensuinggeneous
initial conditions associated witt ¥ ( t,r ) we shall eventually have

V() =0 (5.5e)
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We shall now let
® — N\ Gm 3 — Yy Gm
\ 21 T ZV " \% 23 - ZV e

21 23
m=135,... m=135,...

The following simplifications shall be useful later
(V & )3 =V @ = (g cosut + y;sinut + @B =q, +q, cosut + g, sinut
+0,cos2ut + g, sin2ut + g, cos3ut + g, sin3ut

where
a=1), (ap) 25) g (0)= 2 (an),
2 2 2
_35° Y (an)e __15(aB)?
a=20 +30 Y+ (a)| a0)=-21281
=200 % 3y (ae): a(0)=0
35°(aB) 3 B 3(aB)?®
q=2%1a8) 3(8B) o (0)-2(B) =35, (ae) a(0)=0
_% 30K, __(aB)° _3d0./y _
=L 20K g (0)=-BBL g =29k, g, (0)=0

Similarly we have the following simplification

(V I )2 =V 9 =q, +q,cosut +q,sinut + g, sin2ut + g, cos2ut .

where
a={Z+La(@) ) 0(0)=22EL, o =zq(ae} a(o)=-2(an).

2
9 =2y(aB} 9,(0)=0, a,= ) a,(0)=0.

a.=2 (s~} a,(0) = -{38)

If we substitute in (5.3a)-(5.5d), using (3.4a)2@ib) and (5.6), we simplify to get

V™t = —%{%V Sf*gav Qrarvy }* 2p (Qsin t -y, cos t)

2Ltt

VE(0,0)=0(0Omodd), V& (0,0)+V £ (0,0)=0 (for m=1),

21t

VED(0,0)=0 (m=357A ),

21t

4(1+¢ )n’H
maz(m? +4n¢

(3m) m?Z\/ (3m) — _ 1w, 3oy, w2, =2y W
\ tu, V23 _Am{EV21+EaV21 +aV21}

¢m = rowmlm’ Im:_

23t

Ve (0,0)=0, V¢ (0,0)=0 (Om odd), 4,=r0,I, .

23t

Yet some other simplifications of (5.10a) and (b)ldre necessary thus:
VY 4+ ™V S ==, [q, + 0, CoS t+0,,SINM T+, COS2U T+, Sin2 t

2Lt
g, Cos3ut+q,sin3ut ]+2,u (51’sin,ut—;/lcos,ut )
and
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(5.6)

(5.7a)

(5.7b)

(5.8a)

(5.8b)

(5.8¢)

(5.8d)

(5.9a)

(5.9b)
(5.9¢)

(5.9d)

(5.10a)

(5.10b)
(5.10¢)

(5.10d)

(5.11a)

(5.11b).

(5.12a)



VS 4V E= A [ g, + 0, COSK t+ 0, SINK T+ G COS24 T+ G SiN2us t

(5.12b)
0, COS3u t +q,sindut |+2u (dsinut -y cosut ),
_ _ 3 — 3
where q.=2q+3%q +a8 q,(0)=2(38), 03B (5.120)
2 2 4 4
— 3Ip3
Chs =%+ 3aéq8 +a’o v O (0) =_1§ B -3a’B*-a’B (5'12d)
au4=%qz+3a—2q“52n: a..(0) =0, (5.12e)
6. =3a+22% q,(0)=0 (5.121)
1 3a
06 =§q4+%; a,,(0)=0 (5.129)
1 aB/
Oy =G q17(0 ):_( ) ! (5'12h)
2 8
1 .
Ouszaqe; qla(o ):O' (5-12|)

Whenm = 1, we ensure a uniformly valid solution in (5] Dy setting to zero the coefficients of gds
andsinut and getting
Vl ¢Gus= ; 5;_¢10u4:0
2u 2u
where¢, is the value od,, atm= 1. We have no intention of solving faft) andd,(t) in full from (5.13)
because we can always extract every necessaryrafion needed from these two functions direct from
(5.13). For example, by determining (41Xxat0, we have

_90:(0) _ . 4, (158° ... _%a.(0)
y.(0)= > =a'Q; Q,= ﬂ( g 3B +Bj a(0)= 2 =0. (5.14a,b,c)

(5.13)

The solution of the remaining equation in (5.13&jject to (5.10b,c) is

Vv gm) (t,T)z a;(m) COS,LIl(m)t + ys(m) sin,ul“")t _ ¢m |: O, + C (q3 cosyt+q,sinyu t)

T VAR

, (a,co2ut +q,sin2ut) (g, cos3ut+q,sin3ut)
(™ =2 ) (™ - ) '
where C=1 ifm#l1, C=0if m=1 and

(5.15a)

3
C( 158 +3B% + Bj

P9 m)2 8
51 (0)="s ﬂ%m)z( ) leu){ff +78j—/4” e

)

3(B°-B) B o) )
1 4ﬂ)+8(ﬂj(m)z_9ﬂ2)}], /7(0)=0 (Om odd). (5.15b-d)

Similarly, the solution of (5.12b-d) subject toX%5b,c) is
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+ .
V ;’im) ( t,T )=J:m) COS,U;m)'[ + yf{"’sin,u;m’t _/\m|: q12 + (q3 Cpsﬂt qAS!n:u t)

"™ (™ =)
(5.16a)
, (ascos2ut+q,sin2ut)  (q,cos3ut+q,sin3ut)
\, =4y ) (™ - ) |
where
(1583 43R+ Bj
m()_ N2°Q, (A (5B 9B i
5:)(0)_#()' QSm(/‘)_|:( 4 +7j_ﬂ3( ” (/J3(m)2_#2)
(5.16b-d)

3(B*-B) B® ™
-— Y+ —f Yol {0 )=0 (Om odd).
4(/13(m)2_4,uz) 8(/,/3("‘)2_9/12) Va ( ) ( )
So far we summarize the asymptotic expressiondomal (radial) displacement as
V (xy,t,7,0)=0V @ sinnysinx+[F i(v Osinny +V & sin3ny)sinmx+0 (D“ ) (5.17)
m=13,

1 21
5,...

We note that (5.17) is uniformly valid. For therpose of further analysis we now ‘extract’ the ramd
imperfection amplitudea by performing a Taylor series expansion of eacittion of T aboutt = 0 in
(5.17), using (2.14b), and retaining an adequatabau of terms necessary for the next line of amalys
Thus we get

V=Ba (1-cosut )sinnysinx+a° & [t y/ (0) sinutsinnysinx+

o [ [ 5.18a
5 ¢mQ2(t)S;mny . /\ng(t)szm3ny sinmx|+0(¢*) (5.182)
m=135,.. u ;m) U (3m)
where
3
c| B t3pi+s (cos,ut—cos,ui"‘)t)
5B° 9B 2 8
Q,(t)= + | (cosut-1)+pu! 5
4 4 Hi - p
_3(p°-B) (coszz,u t-cosyu ™) B (cos3u tz—cos,u\im) t) , (5.18b)
-4 | 8lu-ou
3
, 1B 328 (cosyt—cos,u;"‘)t)
Q(t)= (£+9—B](cosy(m)t—1)+y<m) 8 / \
3 3 3 2
4 4 ( o _ 2 )
3(B°-B) (cosz,u t-cosu™t ) B*(cos3ut-cosyt)
- > \ + iak \ . (5.18¢)
alp - 8luy-our)
Now W(x, y) is a random function whose meanW(x, y)> is considered given and this can be written as
<W(Xx\y)>= <a>sinny sinx (5.18d)
T 2r
where <a> =%j j<v_v(x,y)>sinnysinxdydx (5.18e)
T oo

and where the angular bracket <...> denotes the éfadtical expectation. Again the autocorrelatRn
of the imperfection function [5,10-12] is given by
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R (¢.n)=<{w(xy)-<w(xy)>HW(x+{,y+n) -<w(x+{,y+n ) >}> (5.193)
We shall however consider a zero-mean Gaussiastttdor v_v(x, y) and so we have

<W(xy)>=<a>=0 (5.19b)
so that R, (¢n)=<w(xy)w(x+q,y+n)> (5.19¢)
The mean square imperfectionﬁ§(0) is given by
R, =<(W(x,y)) >=<a?>sin*nysin®x (519d)
m2n
This gives <a*>= % [ IR, (0)sin? nysin? xdydx (5.19)
00

We shall, for simplicity of further analysis, assim
R. = A, sinxsin’ny (5.20a)
and note that within the range 0 < xt<we haveR, > 0. HereA;, are positive constants. Thus we have

na‘ o - 327, (5.20b)
o
In the same token [5,8,10-13], the autocorrelaiynof the normal displacement is
R (Zmtt,)=<w(xyt )w(x+Z,y+nt,)> . (5.21a)
The mean square displaceme!kft(x, 2 t) is obtained by setting =77 =0; t, =t, =t and getting
A% (xyt)=R,(0t) = <(w(xyt))?> (5.21b)

On substituting (5.18a) into (5.21b) and simplifyiwe get
A x,y,t)=BT%<a?>(1-cosyt)’sin? nysin®x

+2B<a* > [ty (0)sinut (1-cosut )sin® nysin® x (5.22)
+ i {¢sz(t())szinny + /\mQ3(t())szin3ny} (1—cos,ut )sinny sinx sinmx|+A
m=135,... ﬂlm /_13'“

As noted in [8,13], the two terms in powersi@fand0* in (5.22) shall be adequate. In establishing the
initial post dynamic buckling phenomenon associatéti these structures. We shall now determine the

maximum mean square displacemehi=A ? (xa,ya,ta) wherexa, y, i, are the critical values of the

associated variables at maximum mean square d&pknt. The conditions for maximum mean square
displacement are

A i= A fy= 0. (5.23a,b)
The other condition, to ordér, is
Ai =0. (5.24)

We shall letx,, V., taand 7, be the critical values of the associated variabtesaximum displacement and
now let

t,=to+ [Pty +... (5.25a)
From (5.23a,b), we get
T T
X =—, =—. 5.25b,c
=5 Y=o ( )
From (5.24), we get,
t, =2 (5.25d)
7%
We know [8,13,14] that
_ _ 1024A
<a*>=3<3a?>?="—""1n, 5.25e
2717 ( )

The maximum normal displacementfrom (5.17) is
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m=1,35A

v,=2aB0-*2° Y | (BQ,+B’Q,+B°Q,)- 2¢;{ (15B*+3B*+B)
(5.26a)
(B, +B7Q, +BQ,) JsinT o (1),

where
9, H" c(1+ cosu ™, ) 3 (1 cosu ™, ) _ 3,u‘m)2c(1+ cosy ™t )
Q21 2 : ,U;m) /.1 4(#(m)2 4qu) ’ sz_ : ,Uim)z ﬂz o (54b) (526b)
st= 5 ny (m)z 15c¢ 1+c2:os,ul("‘)t ) 3(1 cos,ul("‘)tm) £L+ cos,ul‘m)t ) (5.260)
sl -] Al -aw] 8w -0
u ™1+ cosp ™M ) 3 (1-cosu™,)
IS 4u - )

Q, :%(cos,u ™, —1) (5.26d)

3,1.1("‘) L1+cos,u("‘)t )
u -t

(m) (m). (m)
Q.= s(cosy““)t ) /13(,“)2 15 1+c?s,u t) 3(1 cosy t) (1+c025/1 t) (5.26f)
‘ aut-e) "l -] ot o]
In the same token the maximum mean square norrsplagiementA ’=A? (xa,ya, r) is, using (5.22)
and (5.25b-d),

Q32 (5266)

128B%*A, [ 2048 A*»[I'B & . mmr
A? = n oy BQ™ + B*Q!™ + BQ™ )sin— +A 5.27a
: on 2117 m;g,s..,( % Q" +8Qr) 2 ez
where
15 1t Jlm m /\m
oo™
s(m) - 3¢;t051m _ ¢m(?)§2 + /\n(\stz (5_27(;)
oo™
o =9 k0n _ $nQu | AQs (5.27d)

20y
where,d;, is the Dirac-delta function. We note that eactBpfQ{™,Q™ and Q!" depends on the load
parameteA. We shall however rewrite (5.27a) as
A% =[Fc+c +A (5.28).

Where ¢ and g are the obvious respective coefficientsBfand* as in (5.27a) and are thus dependent
on A through Q{™,Q!™, Q™ and B. The dynamic buckling load, [8,13] is usually obtained from the
maximization

dA

an’
which is determined at = Ap. However, before invoking the maximization in @)2we first [8,13] have
to reverse the series (5.27a, 5.28) by expreskhimtetist order dfl in the following series

=0 (5.29)

=N d, +(02)%d, +A (5.30a)
where
1 c
d ==, d=-2% (5.30b)
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Each ¢dand ¢ (i =1,3) is a function okp. The maximization (5.29) is now easily executeagh (5.30a)
to yield, after some simplification

0= G (5.31)
4C3
which is evaluated ak=Ap. On further simplifying (5.31), we get
6;1—A~ Y (BQ +BQY +Q )sinm—z” =1. (5.32)
7 m=135,...

Equation (5.32) is understood to be evaluated-at,

6.0 Analysis of theresult
The result (5.32) is asymptotic in nature and i&dvimr small values ofl. Each of the terms in
(5.32) is dependent on the load paramkteand the specific value af that satisfies (5.32) for each value
of O is the dynamic buckling load. We expect the da@mtrterm to come from the case where 1 and
for this we have
OA po(rQ + BQ + Q)= 6.1)

where Q¥,Q% and QY arethe valuesof Q{™,Q™ and Q! respectivlyat m= 1. Onsimplifying (6.1)
further we get

2

oan, || 4 577°¢] Mg e
o[ @1 _\=« ) ®() ®(2 =1 6.2
ar Loy | QO oy | @) ) 62)

as the equation to be satisfied Xky. For convenience we may s&f, = 1. Since Donnell-type of
equations are used, it is necessary nhab.

Figure. 1: Diagram of Cylindrical shell

M,y

Ny

—— Ny M,y

ny My
A
<—— My
/ /
(a) Displacements (b) Stress Resultant (c) Stress Couples
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Figure 2: Cylindrical shells showing components of (a) Displacements (b) Stress Resultants and (c) Stress couples
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