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Abstract 

 
A non-homogeneous semi-infinite elastic material containing a 

semicircular edge notch of radius a, is studied for determination of 
deformation fields and maximum anti-plane shear concentration.  The mode 
of loading on variable intervals [ai,bi], i =1,2, leads to expression for the 
maximal stress, zθσ (a, 0) as a product of two terms; the first is analogous to 

a known anti-plane stress concentration term for a circular hole in an 
infinite body while the other term is a measure of the contribution of material 
constants and changes at load site to the high stress concentration. The 
special case of our result for ziθσ (r, 0) when the notch is absent (a = 0) is in 

agreement with known results.  The variations zθσ (a, 0) with 








a

b

b

a 1

1

or  

are displayed on graphs  
 
 

pp 47 - 56 
 

1.0 Introduction 
Stress analysis of homogeneous and isotropic elastic materials containing notches of various 

geometries have been carried out by various authors (see for example [1-5] ).  Mitchell [1] used truncated 
mapping function technique to analyse a homogeneous material whose geometry is similar to the one 
studied here but subjected to remote uniaxial tension and obtained results that indicate maximum stress 
concentration factor of 3.08.  Rice [3] considered an elliptical hole, of semiaxes a in the x direction and b in 
the y direction in an remote biaxial inplane tensions ∞∞ )(σ,)(σ yyxx and anti-plane shear .∞)(σ yz stresses 

at the end of the semiaxis of length a are   ∞−




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21)(σ)0a( xxyy b
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The uniaxial tensile result may be obtained from (1.1) in the absence of ( ∞σ )xx  as  
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Anti–plane results often obtainable from simple calculations, closely predict tensile 
results, as (1.2) does to (1.3). 

In this paper, we study states in a non-homogenous linearly elastic semi-infinite material 
weakened by a semicircular edge notch of radius a. the material is made of two quarter planes perfectly 
bonded along their interface in the x direction which terminates at the notch.  The materials have elastic 
constants 1µ  for the upper quarter plane and 2µ  for the lower quarter plane opposite shear loads of 

aggregate magnitudes T1 and T2, which need not be equal, are prescribed on variable straight line segments 
of the feel surface, in the y direction. The notch surface is stress free (see Figure 1).  The loaded line 
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segments are intervals [ai, bi] whose lengths Li = bi - ai, i = 1, 2, need not be equal nor symmetric about the 
origin but whose alterations cause the changes in Ti, i =1, 2.  We adopt the convention of attaching the 
subscript 1 to items associated with the upper quarter plane and relate the subscript 2 to items concerning 
the lower quarter plane. 

Our method of analysis and loading direr from those applied to the homogeneous cases cited and 
has been used [6,7] in studying problems with finite boundaries whose sub-segment are loaded. 
 
2.0 Governing boundary value problem 

The non-vanishing stresses satisfy the relations: 

21yx,
y

w
yyx,

x

w
yx,ixz ,i),(),x(),()( i

iiyz

i

i =
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∂
∂

µ=σ   (2.1) 

The following conditions are therefore satisfied at the load sites: 
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In terms of polar coordinates, x = rcosθ , y = rsinθ  the conditions at load sites become  
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Thus the problem is that of finding wi (r, θ ), i =1,2 in the boundary value problem 
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Utilizing the conformal mapping function defined by  
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The original notched half plane is transformed into a plane with a cut along its entire left real line, Figure 
11.  Let (p,φ ) denote polar coordinates in the ξ -plane such that ξ (z) = peiφ , .z = reiθ   
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The transformation converts the problem to that of solving the boundary value problem for wi( ρ ,φ ), i = 1, 

2 given by: 
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The asymptotic behaviours of wi ( ρ ,φ ) i = 1,2 as 0→ρ and as ∞→ρ are determined from (2.8c).  The 

results are 
2
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3.0 Solution of the boundary value problems 

 The Mellin transform of wi ( ρ ,φ ) is denoted by ( ) ( )
2
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Taking the Mellin transform of (2.7) and (2.8) gives  
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Where the Mellin transform of (2.8b) yields 
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The Taylor series expansion of (1 - t) 2
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Where the coefficients are given by 
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Assuming the solution of (3.1) in the form  
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The displacement sought for is given by the inverse Mellin transform denoted by  
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The singularities that enter the evaluation of (3.8) by residue technique are better understood by expressing 
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in the second integrand of (3.8) is found g (s, jβ ) 
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in the first and second integrands respectively. The first integrand has poles of orders 2 at s  =2n - 1, n = 1, 
2, 3,… .  While the second has simple poles at s = 2n - 1, s = 2n, n = 1, 2, 3,… .  Hence the integrals are 
evaluated as follows: 
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The form of the solution aswrittenthenis21whenw 1 ,i,),( ii =β≤ρ≤αφρ  
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all at once.  This leads to the integrals in (3.8) being evaluated with p<1 and therefore with fi(s) given in 
(3.4). Jordan’s lemma indicates closure of contours in the left half plane Res < 0.  All poles there are simple 
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which then imply that for 210 ,ii =α<ρ< , the solution is 
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4.0 Notch surface-interface junction fields 

The notch surface- interface junction is approached as →ρ 0 sequel to which (3.10) yields the 

displacement fields there as 
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Inserting (2.8d.e) into (4.1a) and using the fact that ,
q

q
q

q

22

1

4

1
1

1

4

1








−=−








+  we get 

1,2,
a

b
1 ii

i

i =≥>

































+



















+

+
=− iaab,In

a

a

a

a

b

a

a

b

In)(f

i

i

i

i

i   (4.1b) 

From (2.4) we obtain the relationship Hence0as
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The stress fields are obtained from polar equivalents of (2.1).  The results are 
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The result in (4.4) agrees with the case given in (4.2) of [8] when there is no notch (a = 0 ) under 
concentrated shear forces. The results indicate absence of stress singularities even when a is small enough 
to approximate a narrow notch. 
 
5.0 Conclusion 
 To understand the location with highest stress concentration, we investigate the fields near the 
point (a, 0 ) and as ∞→r .  Let q be a ration umber close to but greater than 1.  At all locations ( )θ,r  

within the material with r = aq, we see that ( ) ( )0,a,qa ziirz θσ≤θσ  and ( ) ( ) 210 ,i,,a,qa zizi =σ≤θσ θθ .  The 

form of ( )θ,rwi , as 21,i,r =∞→  is deduced from that of ( )φρ,wi , when .,i,i 21=βρ φ   Since for this 

case iβρ φ  and iαρ φ  at the same time, (3.8) is evaluated with ( )sf i  given in (3.4) and 1φρ .  The 

contours are closed in the right half place Res > 0 where the integrands in (3.8) have simple poles.  The 
dominant term of ( )φρ,wi  is obtained as  
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 In view of (3.4) ( ) 211 ,i,f i =  is defined at all finite values of 1φφ ii αβ .  It follows from (5.2) 

and (5.3) that the stresses vanish as ∞→r .  On the other hand when r = a and 0=θ , (4.2) indicates that 
the junction of the notch and the interface is not displaced but that the stress concentrated there is deduced 

from (4.4) as    ( ) ( ) ( ) ( ) ( )[ ]1111
1

0 2211 −γ−+−γ+
π

=σ θ fTfT,az   (5.5) 

The notch tip stress (5.5) therefore experiences the maximum stress concentration.  This implies that 
cracking induced by loads will commence at the notch tip.  The response of ( )0,azθσ  to variations of the 

applied loads achieved by changing the load site lengths is displayed in Figure 3 for the case when 
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00 112 φλλ== ,ba,T , so that the variable load site is the interval [ ]11 b,bλ  of length 
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The load site length L may be varied by selecting λ  from terms of a sequence that converge to 1.  From 
(5.5) we see that ( )0,azθσ  depends on materials constants except when ( ) ( )11 2211 −=− fTfT  which arises 

from application of equal and opposite loads on segments of equal length for which 
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The stress concentration for a hole in an infinite plane under remote anti-plane shear may be deduced from 
(1.2) when a = b as     ( ) ( )∞σ=σ yzyz ,a 20    (5.7) 

The infinite plane with a circular hole is equivalent to a semicircular notch in a semi-finite plane blended 
with its mirror image.  Now substituting ( ) 211 ,i,f i =−  of (4.1b) into (5.5) yields the maximal stress 

concentration as 
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In (5.8) each term on the right hand side is composed of 212 ,i,Ti =  comparable to ( )∞σ yz2 , of a circular 

hole in an infinite plane, and 
( ) ( ) 211

2

11
,i,f i =−

π
γ±

 that contains material constants and is a facilitator of 

estimates of effects of load site perturbations on the stress concentration. 
5.1 Concentrated shear force 

 The relation [9] 11101
2

π−




















−+−=









q

p
,

q

p

q

p

q

p
ln  implies 1−=









q

p

q

p
ln  as pq →  and 

may  
be applied to (14.1b) to get 

 ( ) ( )










 −

+







+








−−

−
=−

−

a

ab

a

a

a

a
ab

ba

a

a

ab
f ii

i

i

ii

ii

ii

i

1

1  as 21,i,ba ii =→  (5.1.1) 

Shear force iτ , concentrated at a distance ib  from the origin is obtained if ∞→iT  and ( ) iiii Tab τ→−  as 
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21,i,i =τ  which substituted into (5.5) gives the state of the stress concentration at the tip of the notch due 

to prescribed concentrated shear force.  Division by ib  to get 
i

i

b

τ
 in the expression for ( )111 −fT  was 

introduced for dimensional consistency (see for example equation (4.2) in [8] ).  Here, ( )
i

i

b
fT

τ
=− 2111 , 

when a = 0.  The case T2 = 0 gives stress ( )0,azθσ  due to concentrated share force iτ  as 
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and is used to study the variation of ( )0,azθσ  relative to 
1b

a
 or 

a

b1  under the prescribed concentrated loads 

as shown in Figure 4. 
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Figure 1: The semicircular notch and load sites (not necessarily  Figure 2: Corresponding load site in the −φρ, plane 

 Symmetric): [ ]11 b,a  for 1T  and [ ]22 b,a  for 2T    (not necessarily symmetric) 
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