Deformation fields due to sheared semicircular edge notch in a non-homogeneous elastic material

James N. Nnadi
Department of Mathematics
Abia State University, Uturu, Nigeria

Abstract

A non-homogeneous semi-infinite elastic material containing a semicircular edge notch of radius a, is studied for determination of deformation fields and maximum anti-plane shear concentration. The mode of loading on variable intervals $\left[a_{i}, b_{i}\right], i=1,2$, leads to expression for the maximal stress, $\sigma_{\theta_{i}}(a, 0)$ as a product of two terms; the first is analogous to a known anti-plane stress concentration term for a circular hole in an infinite body while the other term is a measure of the contribution of material constants and changes at load site to the high stress concentration. The special case of our result for $\sigma_{i \theta_{t}}(r, 0)$ when the notch is absent $(a=0)$ is in agreement with known results. The variations $\sigma_{\theta \star}(a, 0)$ with $\frac{a}{b_{1}}\left(\right.$ or $\left.\frac{b_{1}}{a}\right)$ are displayed on graphs

pp 47 - 56

$1.0 \quad$ Introduction

Stress analysis of homogeneous and isotropic elastic materials containing notches of various geometries have been carried out by various authors (see for example [1-5]). Mitchell [1] used truncated mapping function technique to analyse a homogeneous material whose geometry is similar to the one studied here but subjected to remote uniaxial tension and obtained results that indicate maximum stress concentration factor of 3.08. Rice [3] considered an elliptical hole, of semiaxes a in the x direction and b in the y direction in an remote biaxial inplane tensions $\left(\sigma_{x x}\right) \infty,\left(\sigma_{y y}\right) \infty$ and anti-plane shear $\left(\sigma_{y z}\right) \infty$.stresses
at the end of the semiaxis of length a are

$$
\sigma_{y y}(\mathrm{a}, 0)=\left(\sigma_{y y}\right) \infty\left[1+2 \frac{\mathrm{a}}{b}\right]-\left(\sigma_{x x}\right) \infty
$$

$$
\begin{equation*}
\sigma_{y z}(\mathrm{a}, 0)=\left(\sigma_{\mathrm{yz}}\right) \infty\left[1+\frac{\mathrm{a}}{\mathrm{~b}}\right] \tag{1.1}
\end{equation*}
$$

The uniaxial tensile result may be obtained from (1.1) in the absence of ($\sigma_{x x}$) ∞ as

$$
\begin{equation*}
\sigma_{y y}(\mathrm{a}, 0)=\left(\sigma_{\mathrm{yy}}\right) \infty\left[1+2 \frac{\mathrm{a}}{\mathrm{~b}}\right] \tag{1.3}
\end{equation*}
$$

Anti-plane results often obtainable from simple calculations, closely predict tensile results, as (1.2) does to (1.3).

In this paper, we study states in a non-homogenous linearly elastic semi-infinite material weakened by a semicircular edge notch of radius a. the material is made of two quarter planes perfectly bonded along their interface in the x direction which terminates at the notch. The materials have elastic constants μ_{1} for the upper quarter plane and μ_{2} for the lower quarter plane opposite shear loads of aggregate magnitudes T_{1} and T_{2}, which need not be equal, are prescribed on variable straight line segments of the feel surface, in the y direction. The notch surface is stress free (see Figure 1). The loaded line
segments are intervals $\left[a_{i}, b_{i}\right]$ whose lengths $\mathrm{L}_{i}=\mathrm{b}_{i}-\mathrm{a}_{i}, i=1,2$, need not be equal nor symmetric about the origin but whose alterations cause the changes in $T_{i}, i=1,2$. We adopt the convention of attaching the subscript 1 to items associated with the upper quarter plane and relate the subscript 2 to items concerning the lower quarter plane.

Our method of analysis and loading direr from those applied to the homogeneous cases cited and has been used [6,7] in studying problems with finite boundaries whose sub-segment are loaded.

2.0 Governing boundary value problem

The non-vanishing stresses satisfy the relations:

$$
\begin{equation*}
\sigma_{\mathrm{ixx}}(\mathrm{x}, \mathrm{y})=\mu_{i} \frac{\partial \mathrm{w}_{i}}{\partial \mathrm{x}}(\mathrm{x}, \mathrm{y}), \sigma_{i y \mathrm{z}}(x, \mathrm{y})=\mu_{i} \frac{\partial \mathrm{w}_{i}}{\partial \mathrm{y}}(\mathrm{x}, \mathrm{y}), i=1,2 \tag{2.1}
\end{equation*}
$$

The following conditions are therefore satisfied at the load sites:

$$
\frac{\partial w_{1}}{\partial \theta}(0, y)=-\frac{T_{1}}{\mu_{1}}, \mathrm{a}_{1} \leq y \leq b_{1} ; \frac{\partial w_{2}}{\partial \mathrm{x}}(0, y)=\frac{T_{2}}{\mu_{2}},-\mathrm{a}_{2} \leq \mathrm{y} \leq-b_{2}
$$

In terms of polar coordinates, $\mathrm{x}=r \cos \theta, y=r \sin \theta$ the conditions at load sites become

$$
\frac{\partial w_{i}}{\partial \theta}\left(r, \pm \frac{\pi}{2}\right)=\frac{r T_{i}}{\mu_{i}}, i=1,2
$$

Thus the problem is that of finding $w_{i}(\mathrm{r}, \theta), i=1,2$ in the boundary value problem

$$
\begin{gather*}
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right) w_{i}(r, \theta)=0, \quad \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}, r \geq \mathrm{a}, \quad i=1,2 \tag{2.2}\\
w_{1}(r, 0)=w_{2}(r, 0) ; \quad \mu_{1} \frac{\partial w_{2}}{\partial \theta}(r, 0)=\mu_{2} \frac{\partial w_{2}}{\partial \theta}(r, 0), r \geq \mathrm{a} \tag{2.3a}\\
\frac{\partial w_{i}}{\partial \mathrm{x}}\left(r, \pm \frac{\pi}{2}\right)=\frac{r T_{i}}{\mu}=\frac{r T_{i}}{\mu_{i}}, \mathrm{a}_{i} \leq r \leq b_{i}, \quad \vartheta=(-)^{i-1} \frac{\pi}{2}, i=1,2 \quad \mathrm{a} \leq \mathrm{a}_{i}<\mathrm{b}_{i} \tag{2.3b}\\
\frac{\partial w_{i}}{\partial \theta}(\mathrm{a}, \theta)=0, \quad \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2} \tag{2.3c}
\end{gather*}
$$

Utilizing the conformal mapping function defined by

$$
\begin{equation*}
\xi(z)=\frac{1}{2}\left(\frac{z}{a}-\frac{\mathrm{a}}{z}\right), \quad z=\mathrm{x}+i y \tag{2.4}
\end{equation*}
$$

The original notched half plane is transformed into a plane with a cut along its entire left real line, Figure 11. Let (p, ϕ) denote polar coordinates in the ξ-plane such that $\xi(z)=p e^{i \boldsymbol{\theta}} . z=r e^{i \boldsymbol{\theta}}$

$$
\pi \leq \phi \leq \pi, \frac{-\pi}{-2} \leq \theta \leq \frac{\pi}{2}, \quad p \geq 0, r \geq a
$$

Suppose $\xi(r, \theta)=u(r, \theta)+i v(r, \theta)$ then $u(r, \theta)=\rho \cos \phi, v(r, \theta)=p \sin \phi$ implies $\rho(\mathrm{r}, \theta)=\left\{u^{2}(r, \theta)+\right.$ $\left.v^{2}(r, \theta)\right\}^{1 / 2}$ and $\cot \phi=\frac{u(r, \theta)}{v(r, \theta)}$ where $u(r, \theta)=\left(\frac{1}{2} \frac{r}{a}-\frac{a}{r}\right) \cos \theta$ and $v(r, \theta)=\left(\frac{1}{2} \frac{r}{a}-\frac{a}{r}\right) \sin \theta$. Therefore

$$
\begin{gather*}
\frac{\partial p}{\partial r}(a, \theta)=0, \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2} ; \frac{\partial p}{\partial \theta}\left(r, \pm \frac{\pi}{2}\right)=0, \frac{\partial p}{\partial \theta}(r, 0)=0, r \geq \mathrm{a} \\
\frac{\partial \phi}{\partial r}(\mathrm{a}, \theta)=\frac{-1}{\mathrm{a}} \cot \theta, \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}, \theta \neq 0, \frac{\partial \phi}{\partial \theta}\left(r, \pm \frac{\pi}{2}\right)=\frac{\left(\frac{r}{\mathrm{a}}-\frac{\mathrm{a}}{r}\right)}{\left(\frac{r}{\mathrm{a}}+\frac{\mathrm{a}}{r}\right)} \tag{2.5}
\end{gather*}
$$

Since $v\left(r, \pm \frac{\pi}{2}\right)= \pm p\left(r, \pm \frac{\pi}{2}\right)= \pm\left[\frac{1}{2}\left(\frac{r}{\mathrm{a}}+\frac{\mathrm{a}}{r}\right)\right]^{2}, r \geq a$, it follows that $\frac{r}{\mathrm{a}}=\rho+\left(\rho^{2}-1\right)^{1 / 2}$ and so $\frac{\partial \theta}{\partial \theta}\left(r, \pm \frac{\pi}{2}\right)=\left(\rho^{2}-1\right) \rho^{-1}, \rho \phi 1$. Using (2.5) together with the fact that $w_{i}(r, \theta), i=1,2$, we get

$$
\begin{align*}
& \frac{\partial w_{i}}{\partial \theta}\left(r, \pm \frac{\pi}{2}\right)=\frac{\partial w_{i}}{\partial \phi}\left(p, \pm \frac{\pi}{2}\right) \frac{\partial \phi}{\partial \theta}\left(r, \pm \frac{\pi}{2}\right), i=1,2, p>1 \tag{2.6a}\\
& \frac{\partial w_{i}}{\partial r}(\mathrm{a}, \theta)=\frac{\partial w_{i}}{\partial \theta}\left(p, \pm \frac{\pi}{2}\right) \frac{\partial w}{\partial \phi}(\mathrm{a}, \theta), \quad i=1,2, p<1 \tag{2.6b}
\end{align*}
$$

The transformation converts the problem to that of solving the boundary value problem for $w_{i}(\rho, \phi), i=1$, 2 given by:

$$
\begin{gather*}
\left(\frac{\partial^{2}}{\partial p^{2}}+\frac{1}{p} \frac{\partial}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right) w_{i}(p, \phi)=0, p \geq 0,-\pi \leq \phi \leq \pi, i=1,2 \tag{2.7}\\
w_{1}(\rho, 0)=w_{2}(\rho, 0), \mu_{1} \frac{\partial w_{1}}{\partial \phi}(\rho, 0)=\mu_{2} \frac{\partial w_{2}}{\partial \phi}(\rho, 0), \rho \geq 0 \tag{2.8a}\\
\frac{\partial w_{1}}{\partial \phi}\left(\rho, \pm \frac{\pi}{2}\right)=\frac{a T_{1}}{\mu_{1}}\left[\rho+\rho^{2}\left(\rho^{2}-1\right)^{\frac{-1}{2}}\right], \alpha_{i} \leq \rho \leq \beta_{i}, i=1,2 \tag{2.8b.c}\\
=0, \rho \pi \alpha_{i}, \rho \phi \beta_{i}, i=1,2 \\
\alpha_{i}=\frac{1}{2}\left(\frac{a_{i}}{a}+\frac{a}{a_{i}}\right), \quad \beta_{o}=\frac{1}{2}\left(\frac{b_{1}}{a}+\frac{a}{b_{i}}\right), \quad \beta_{i}=\alpha_{i} \phi 0, i=1,2 \tag{2.8~d,e}
\end{gather*}
$$

The asymptotic behaviours of $w_{i}(\rho, \phi) i=1,2$ as $\rho \rightarrow 0$ and as $\rho \rightarrow \infty$ are determined from (2.8c). The results are $w_{i}(p, \phi)=C_{3} p^{\frac{1}{2}} \sin \frac{\phi}{2}$ as $p \rightarrow 0, \quad w_{i}(p, \phi)=C_{4} p^{-\frac{1}{2}} \sin \frac{\phi}{2}$ as $p \rightarrow \infty$.

3.0 Solution of the boundary value problems

The Mellin transform of $w_{i}(\rho, \phi)$ is denoted by $\bar{w}_{i}(s, \phi)=\int_{0}^{\infty} w(\rho, \phi) \rho^{s-1} d \rho,-\frac{1}{2} \pi \operatorname{Re} s \pi \frac{1}{2}$.
Taking the Mellin transform of (2.7) and (2.8) gives

$$
\begin{align*}
& \left(\frac{d^{2}}{d \phi^{2}}+S^{2}\right) \bar{W}_{i}(s, \phi)=0, \quad-\frac{1}{2}<\operatorname{Re} s<\frac{1}{2}, \quad i=1,2 \tag{3.1}\\
& \bar{W}_{1}(S, 0)=\bar{W}_{2}(s, 0), \quad \mu_{1} \frac{\partial \bar{W}_{1}}{\partial \phi}(S, 0)=\mu_{2} \frac{\partial \bar{W}}{\partial \phi}(s, 0) \tag{3.2a}\\
& \frac{\partial \bar{W}_{i}}{\partial \phi}\left(\rho, \pm \frac{\pi}{2}\right)=\frac{a T_{i}}{2 \mu_{i}} f_{i}(s), i=1,2 \tag{3.2b}
\end{align*}
$$

Where the Mellin transform of (2.8b) yields

$$
\begin{equation*}
f_{i}(s)=\int_{\alpha_{i}}^{\beta_{i}} \rho^{s+1}\left(\rho^{2}-1\right)^{-\frac{1}{2}} d \rho+\frac{\beta_{i}^{S+1}-\alpha_{i}^{S+1}}{s+1}, \quad i=1,2 \tag{3.3}
\end{equation*}
$$

The Taylor series expansion of $(1-t)^{-\frac{1}{2}},|t|<1$ will be written as

$$
\begin{equation*}
(1-t)^{-\frac{1}{2}}=\sum_{k=0}^{\infty} a_{k} t^{k} \tag{3.3b}
\end{equation*}
$$

Where the coefficients are given by $a_{k}=\frac{(2 k)!}{2^{2 k}(k!)^{2}}$. In view of (3.3b) the integrand in (3.3a) contains $\rho^{s}\left(1-\rho^{-2}\right)^{-\frac{1}{2}}=\sum_{k=0}^{\infty} a_{k} \rho^{s-2 k}$. Thus $f_{i}(s)=\sum_{k=1}^{\infty} a_{k}\left(\frac{\beta_{i}^{S-2 k+1}-\alpha_{i}^{S-2 k+1}}{s-2 k+1}\right)+2\left(\frac{\beta_{i}^{S+1}-\alpha_{i}^{S+1}}{s+1}\right), i=1,2$ (3.4)
Assuming the solution of (3.1) in the form

$$
\begin{equation*}
\bar{W}_{i}(s, \phi)=A_{i}(s) \sin s \phi+B_{i}(s) \cos \phi i=1,2 \tag{3.5}
\end{equation*}
$$

The continuity conditions (3.2a) yield

$$
\begin{equation*}
B_{1}(s)=\mathrm{B}_{2}(s), \mu_{1} A_{1}(s)=\mu_{2} A_{2}(s) \tag{3.6}
\end{equation*}
$$

Using (3.2b), (3.5) and (3.6) we get

$$
\begin{align*}
& A_{i}(s)=\frac{a}{2 \mu_{i}}\left[(1+\gamma) T_{1} f_{1}(s)+(1-\gamma) T_{2} f_{2}(s)\right] \frac{1}{s \cos \frac{\pi}{2} s} \tag{3.7a}\\
& B_{i}(s)=\frac{a}{2}\left[(1+\gamma) \frac{T_{2}}{\mu_{2}} f_{2}(S)-(1-\gamma) \frac{T_{1} f_{1}(s)}{\mu_{i}}\right] \frac{1}{s \sin \frac{\pi}{2} s} \tag{3.7b}\\
& \gamma=\frac{\mu_{2}-\mu_{1}}{\mu_{2}+\mu_{1}}
\end{align*}
$$

The displacement sought for is given by the inverse Mellin transform denoted by

$$
w(\rho, \phi)=\frac{1}{2 \pi_{i}} \int_{c-i \infty}^{c+i \infty} \bar{W}(s, \phi) \rho^{-s} d s,-\frac{1}{2}<\operatorname{Re} s<\frac{1}{2}
$$

Using (3.5) and (3.7) we see that

$$
\begin{align*}
w_{j}(\rho, \phi)= & \frac{a}{2 \mu_{j}}\left\{\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left[(1+\gamma) T_{1} f_{1}(s)+(1-\gamma) T_{2} f_{2}(s)\right] \rho^{-s} \frac{\sin s \phi}{s \cos \frac{\pi}{2} s} d s\right. \\
& \left.+\frac{\mu_{j}}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left[(1+\gamma) \frac{T_{2}}{\mu_{2}} f_{2}(s)-(1-\gamma) \frac{T_{1}}{\mu_{1}} f_{1}(s)\right] \rho^{-s} \frac{\cos s \phi}{s \sin \frac{\pi}{2} s} d s\right\}, j=1,2 \tag{3.8}
\end{align*}
$$

The singularities that enter the evaluation of (3.8) by residue technique are better understood by expressing $f_{i}(s) \rho^{-s}$ in the form $f_{i}(s) \rho^{-s}=g\left(s, \beta_{i}\right)\left(\frac{\rho}{\beta_{i}}\right)^{-s}-g\left(s, \alpha_{i}\right)\left(\frac{\rho}{\alpha_{i}}\right)$ where $g(s, t)=\sum_{k=1}^{\infty} \frac{a_{k} t^{1-2 k}}{s-2 k+1}+\frac{2 t}{s+1}$. To obtain $w_{i}(\rho, \phi)$ when $\alpha_{i} \leq \rho \leq \beta_{i}, i=1,2$ we note that $\frac{\rho}{\beta_{i}}<1$ and $\frac{\rho}{\alpha_{i}}>1$ jointly. Jordan's lemma then implies closure of contours in the left half plane Res < 0 for $\rho<\beta_{i}$ and in the right half plane Res >0 for $\rho>\alpha_{i}, i=1,2$. When $\rho>\beta_{i}$, the first integrand in (3.8) involves $g\left(\mathrm{~s}, \beta_{i}\right) \frac{\sin s \phi}{s \cos \frac{\pi}{2} s}$ which has simple poles located at $\mathrm{s}=-(2 n-1), n=1,2,3, \ldots$ and a pole of order 2 at $s=-1$. Consequently we derive

$$
1_{\beta j}^{(1)}(\rho, \phi)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} g\left(S, \beta_{j}\right)\left(\frac{p}{\beta_{j}}\right)^{-s} \frac{\sin s \phi}{s \cos \frac{\pi}{2}} d s=\frac{4}{\pi}\left[-i n\left(\frac{p}{\beta_{j}}\right) \sin \phi-\phi \cos \phi+\sin \phi\right] p
$$

$$
+\frac{2}{\pi} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} a_{k} \frac{\beta_{J}^{2-2 n-2 k}}{2-2 n-2 k} p^{2 n-1} \sin (2 n-1) \phi, \quad j=1,2
$$

in the second integrand of (3.8) is found $g\left(\mathrm{~s}, \beta_{j}\right) \frac{\cos s \phi}{s \sin \frac{\pi}{2} s}$ which has simple at $s=2 n, n=1,2,3, \ldots$ and at $s=-1$. Therefore
$1_{\beta j}^{(2)}(\rho, \phi)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} g\left(s, \beta_{j}\right)\left(\frac{\rho}{\beta_{j}}\right)^{-s} \frac{\cos s \phi}{s \sin \frac{\pi}{2} s} d s=2 p \cos \phi-\frac{1}{\pi} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{(-1)^{n}}{n} a_{k} \frac{\beta_{j}^{1-2 n-2 k}}{1-2 n-2 k} p^{2 n} \cos 2 n \phi, j=1,2$ when $\frac{p}{\alpha_{i}}>1$, the functions to be considered are $-g\left(s, \alpha_{i}\right) \frac{\sin s \phi}{s \cos \frac{\pi}{2} s}$ and $-g\left(s, \alpha_{i}\right) \frac{\cos s s \phi}{s \sin \frac{\pi}{2} s}, i=1,2$
in the first and second integrands respectively. The first integrand has poles of orders 2 at $s=2 n-1, \mathrm{n}=1$, $2,3, \ldots$. While the second has simple poles at $s=2 n-1, s=2 n, n=1,2,3, \ldots$. Hence the integrals are evaluated as follows:

$$
1_{a j}^{(1)}(\rho, \phi)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} g\left(s, \alpha_{j}\right)\left(\frac{\rho}{\alpha_{j}}\right)^{-s} \frac{\sin s \phi}{s \cos \frac{\pi}{2} s} d s=\frac{1}{\pi} \sum_{\substack{n=1}}^{\infty} \sum_{\substack{k=1 \\ k \neq n}}^{\infty} \frac{(-1)^{n-1}}{2 n-1} a k \frac{\alpha_{j}^{2(n-k)}}{n-k} \rho^{-(2 n-1)} \sin (n-1) \phi
$$

$$
-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} a_{n}\left[-\ln \frac{\rho}{\alpha_{j}} \sin (2 n-1) \phi+\phi \cos (2 n-1) \phi-\frac{\sin (2 n-1) \phi}{2 n-1}\right] \rho-(2 n-1), j=1,2
$$

$$
1_{\alpha j}^{(2)}(\rho, \phi)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} g\left(s, \alpha_{j}\right)\left(\frac{\rho}{\alpha_{j}}\right)^{-s} \frac{\cos s \phi}{s \sin \frac{\pi}{2} s} d s=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} a_{n} \rho^{-(2 n-1)} \cos (2 n-1) \phi
$$

$$
+\frac{1}{\pi} \sum_{n-1}^{\infty} \frac{(-1)^{n}}{n} g\left(2 n, \alpha_{j}\right) \rho^{-2 n} \cos 2 n \phi, \quad j=1,2
$$

The form of the solution $\mathrm{w}_{i}(\rho, \phi)$ when $\alpha_{i} \leq \rho \leq \beta_{1}, i=1,2$ is then written as

$$
\begin{align*}
w_{i}(\rho, \phi)=\frac{1}{2 \mu i}\{(1 & +\gamma) T_{1}\left[1_{\beta 1}^{(1)}(\rho, \phi)+1_{\alpha 1}^{(1)}(\rho, \phi)\right]+(1-\gamma) T_{2}\left[1_{\beta 2}^{(1)}(\rho, \phi)+1_{\alpha 2}^{(1)}(\rho, \phi]\right. \\
& \left.+\mu_{i}\left[(1+\gamma) \frac{T_{2}}{\mu_{2}}\left\{l_{\beta 2}^{(2)}(\rho, \phi)\right\}-(1-\gamma) \frac{T_{1}}{\mu_{1}}\left\{1_{\beta 1}^{(2)}(\rho, \phi)+1_{\alpha 1}^{(2)}(\rho, \phi)\right\}\right]\right\}, i=1,2 \tag{3.9}
\end{align*}
$$

Next we derive the form of $w_{i}(\rho, \phi)$ for $0<\rho<\alpha_{i}, i=1,2, \ldots$. By first noting that $\frac{\rho}{\alpha_{i}}<1$ and $\frac{\rho}{\beta_{i}}<1$ all at once. This leads to the integrals in (3.8) being evaluated with $\mathrm{p}<1$ and therefore with $f_{i}(\mathrm{~s})$ given in (3.4). Jordan's lemma indicates closure of contours in the left half plane Res <0. All poles there are simple and contributed by $\cos \frac{\pi}{2} \mathrm{~s}$ in the first integrand and by $\sin \frac{\pi}{2} \mathrm{~s}$ in the second integrand. Hence

$$
\begin{aligned}
& 1_{j}^{(1)}(v, \phi)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} f_{j}(s) \rho^{-s} \frac{\sin s \phi}{s \cos \frac{\pi}{2} s} d s=\frac{2}{\pi} \sum_{n-1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} f_{j}(1-2 n) p^{2 n-1} \sin (2 n-1) \phi, j=1,2 \text { and } \\
& 1_{j}^{(2)}(\rho, \phi)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} f_{j}(s) \rho^{-s} \frac{\cos s \phi}{s \sin \frac{\pi}{2} s}=\frac{1}{\pi} \sum_{n-1}^{\infty} \frac{(-1)^{n}}{n} f_{j}(-2 n) \rho^{2 n} \cos 2 n \phi, j=1,2
\end{aligned}
$$

which then imply that for $0<\rho<\alpha_{i} i=1,2$, the solution is

$$
\begin{align*}
w_{i}(\rho, \phi)= & \frac{a}{2 \mu_{i}}\left\{(1+\gamma) T_{1} 1_{1}^{(1)}(\rho, \phi)+(1-\gamma) T_{2} 1_{2}^{(1)}(\rho, \phi)\right] \\
& \left.+\mu_{i}\left[(1+\gamma) \frac{T_{2}}{\mu_{2}} 1_{2}^{(2)}(\rho, \phi)-(1-\gamma) \frac{T_{1}}{\mu_{1}} 1_{1}^{(2)}(\rho, \phi)\right]\right\}, i=1,2 \tag{3.10}
\end{align*}
$$

Notch surface-interface junction fields

The notch surface- interface junction is approached as $\rho \rightarrow 0$ sequel to which (3.10) yields the displacement fields there as

$$
W_{i}(\rho, \phi)=\frac{a}{\pi \Phi_{i}}\left\{(1-\gamma) T_{1} f_{1}(-1)+(1-\gamma) T_{2} f_{2}(-1)\right\} \rho \sin \phi \text { as } \rho \rightarrow 0, i=1,2
$$

From (3.4) $f_{1}(-1)=\sum_{k=1}^{\infty} a_{k} \frac{\left(\beta_{i}^{-2 k}-\alpha_{i}^{-2 k}\right)}{-2 k}+2 \operatorname{In}\left(\frac{\beta_{i}}{\alpha_{i}}\right) i=1,2$. Using the relationship

$$
\sum_{k=1}^{\infty} \frac{a_{k}}{k} t^{k}=-2 \operatorname{In} t+2 \operatorname{In}(1-\sqrt{1-t})-2 \operatorname{In} 2,|t| \leq 1
$$

it is readily seen that

$$
\begin{equation*}
f_{i}(-1)=\operatorname{In}\left(\frac{\beta_{i}}{\alpha_{i}}\right)+\operatorname{In}\left(\frac{\alpha_{i}-\sqrt{\alpha_{i}^{2}-1}}{\beta_{i}-\sqrt{\beta_{i}^{2}-1}}\right), i=1,2 \tag{4.1a}
\end{equation*}
$$

Inserting (2.8d.e) into (4.1a) and using the fact that $\frac{1}{4}\left(q+\frac{1}{q}\right)^{2}-1=\frac{1}{4}\left(q-\frac{1}{q}\right)^{2}$, we get

$$
\begin{equation*}
f_{i}(-1)=\left\{\operatorname{In}\left[\frac{\frac{b_{i}}{a}+\frac{a}{b_{i}}}{\frac{a_{i}}{a}+\frac{a}{a_{i}}}\right]+\operatorname{In}\left(\frac{\mathrm{b}_{\mathrm{i}}}{\mathrm{a}_{\mathrm{i}}}\right)\right\}, b_{\mathrm{i}}>a_{\mathrm{i}} \geq a, i=1,2 \tag{4.1b}
\end{equation*}
$$

From (2.4) we obtain the relationship $\frac{1}{2}\left(\frac{r}{a}+\frac{a}{r}\right) \sin \theta=\rho \sin \phi$ as $\rho \rightarrow 0$ and $r \rightarrow a$. Hence

$$
\begin{equation*}
w_{i}(r, \theta)=\frac{a}{2 \pi \mu_{i}}\left\{(1+\gamma) T_{1} f_{1}(-1)+(1-\gamma) T_{2} f_{2}(-1)\right\}\left(\frac{r}{a}+\frac{a}{r}\right) \sin \theta, r \rightarrow a, i=1,2 \tag{4.2}
\end{equation*}
$$

The stress fields are obtained from polar equivalents of (2.1). The results are

$$
\begin{align*}
& \sigma_{i z}(r, \theta)=\frac{1}{2 \pi}\left\{(1+\gamma) T_{1} f_{1}(-1)+(1-\gamma) T_{2} f_{2}(-1)\right\}\left(1-\frac{a^{2}}{r^{2}}\right) \sin \theta, r \rightarrow a, i=1,2 \tag{4.3}\\
& \sigma_{i \theta z}(r, \theta)=\frac{1}{2 \pi}\left\{(1+\gamma) T_{1} f_{1}(-1)+(1-\gamma) T_{2} f_{2}(-1)\right\}\left(1+\frac{a^{2}}{r^{2}}\right) \cos \theta, r \rightarrow a, i=1,2 \tag{4.4}
\end{align*}
$$

The result in (4.4) agrees with the case given in (4.2) of [8] when there is no notch ($a=0$) under concentrated shear forces. The results indicate absence of stress singularities even when a is small enough to approximate a narrow notch.

5.0 Conclusion

To understand the location with highest stress concentration, we investigate the fields near the point (a, 0) and as $r \rightarrow \infty$. Let q be a ration umber close to but greater than 1 . At all locations (r, θ) within the material with $r=a q$, we see that $\sigma_{i r z}(q a, \theta) \leq \sigma_{i \theta z}(a, 0)$ and $\sigma_{i \theta z}(q a, \theta) \leq \sigma_{i \theta z}(a, 0), i=1,2$. The form of $w_{i}(r, \theta)$, as $r \rightarrow \infty, i=1,2$ is deduced from that of $w_{i}(\rho, \phi)$, when $\rho \phi \beta_{i}, i=1,2$. Since for this case $\rho \phi \beta_{i}$ and $\rho \phi \alpha_{i}$ at the same time, (3.8) is evaluated with $f_{i}(s)$ given in (3.4) and $\rho \phi 1$. The contours are closed in the right half place Res >0 where the integrands in (3.8) have simple poles. The dominant term of $w_{i}(\rho, \phi)$ is obtained as

$$
w_{i}(\rho, \phi)=\frac{-a}{2 \pi \mu_{i}}\left\{(1+\gamma) T_{1} f_{1}(1)+(1-\gamma) T_{2} f_{2}(1)\right\} \rho^{-1} \sin \frac{\phi}{2}, \text { as } \rho \rightarrow \infty, i=1,2 .
$$

Application of the relation $\rho^{-1} \sin \phi=2 a r^{-1} \sin \theta$ obtained from the mapping (2.4) as $\rho \rightarrow \infty$, and $r \rightarrow \infty$ yields $\quad w_{i}(r, \phi)=\frac{-2 a^{2}}{\pi \mu_{i}}\left\{(1+\gamma) T_{1} f_{1}(1)+(1-\gamma) T_{2} f_{2}(1)\right\} r^{-1} \sin \theta$, as $r \rightarrow \infty, i=1,2$
$w_{r i}(r, \phi)=\frac{-2 a^{2}}{\pi}\left\{(1+\gamma) T_{1} f_{1}(1)+(1-\gamma) T_{2} f_{2}(1)\right\} r^{-1} \sin \theta$, as $r \rightarrow \infty, i=1,2$

$$
\begin{equation*}
w_{\theta z i}(r, \phi)=\frac{-2 a^{2}}{\pi}\left\{(1+\gamma) T_{1} f_{1}(1)+(1-\gamma) T_{2} f_{2}(1)\right\} r^{-1} \cos \theta, \text { as } r \rightarrow \infty, i=1,2 \tag{5.2}
\end{equation*}
$$

From (3.4) $\quad f_{1}(1)$ contains $\sum_{k=2}^{\infty} a_{k} \frac{t^{2(1-k)}}{1-k}$ whose sum is found by noting that integrating both sides of $\sum_{k=2}^{\infty} a_{k} t^{-k}=-t-\frac{1}{2} t^{-1}+\left(1-t^{-1}\right)^{\frac{-1}{2}},|t|>1$ and changing variables through $\varepsilon^{2}=t^{-1}$ yields

$$
\sum_{k=2}^{\infty} a_{k} \frac{t^{1-k}}{1-k}=-t-\frac{1}{2} \ln t+2 \int\left(1+\varepsilon^{2}\right)^{\frac{1}{2}} d \varepsilon+c,|t| \geq 1
$$

from which we get

$$
\sum_{k=2}^{\infty} a_{k} \frac{t^{1-k}}{1-k}=-t-\frac{1}{2} \ln t+t^{\frac{1}{2}}(t-1)^{\frac{1}{2}}+\ln (\sqrt{t}+\sqrt{t-1})+c,|t| \geq 1 \text { then }
$$

$$
\begin{align*}
& f_{1}(1)=\sum_{k=2}^{\infty} a_{k} \frac{\left(\beta_{i}^{2(1-k)}-\alpha_{i}^{2(1-k)}\right)}{2(1-k)}+\left(\beta_{i}^{2}-\alpha_{l}^{2}\right)=\beta_{i}^{2}-\alpha_{i}^{2}+\beta_{i}^{2}\left(\beta_{i}^{2}-1\right)^{\frac{1}{2}-}-\alpha_{i}^{2}\left(\alpha_{i}^{2}-1\right)^{\frac{1}{2}} \\
&+\ln \left[\frac{\beta_{i}+\sqrt{\beta_{i}^{2}-1}}{\alpha_{i}+\sqrt{\alpha_{i}^{2}-1}}\right], i=1,2 \tag{5.4}
\end{align*}
$$

In view of (3.4) $f_{i}(1), i=1,2$ is defined at all finite values of $\beta_{i} \phi \alpha_{i} \phi 1$. It follows from (5.2) and (5.3) that the stresses vanish as $r \rightarrow \infty$. On the other hand when $r=a$ and $\theta=0$, (4.2) indicates that the junction of the notch and the interface is not displaced but that the stress concentrated there is deduced
from (4.4) as

$$
\begin{equation*}
\sigma_{\theta z}(a, 0)=\frac{1}{\pi}\left[(1+\gamma) T_{1} f_{1}(-1)+(1-\gamma) T_{2} f_{2}(-1)\right] \tag{5.5}
\end{equation*}
$$

The notch tip stress (5.5) therefore experiences the maximum stress concentration. This implies that cracking induced by loads will commence at the notch tip. The response of $\sigma_{\theta z}(a, 0)$ to variations of the applied loads achieved by changing the load site lengths is displayed in Figure 3 for the case when
$T_{2}=0, a_{1}=\lambda b_{1}, \lambda \phi 0$, so that the variable load site is the interval $\left[\lambda b_{1}, b_{1}\right]$ of length $L=(1-\lambda) b_{1}, 0 \pi \lambda \pi 1$. From (4.1b) $f_{i}(-1)$ takes the form

$$
f_{1}(-1)=\left\{\begin{array}{c}
2 \ln \left(\frac{1}{\lambda}\right)+\ln \left[\frac{x^{2}+1}{\left(\frac{x}{\lambda}\right)^{2}+1}\right], x=\frac{a}{b} \pi \sqrt{\lambda} \tag{5.6a,b}\\
\ln \left[\frac{x^{2}+1}{\left[(\lambda x)^{2}+1\right]}\right], x=\frac{b_{1}}{a} \phi \frac{1}{\sqrt{\lambda}}
\end{array}\right.
$$

The load site length L may be varied by selecting λ from terms of a sequence that converge to 1 . From (5.5) we see that $\sigma_{\theta z}(a, 0)$ depends on materials constants except when $T_{1} f_{1}(-1)=T_{2} f_{2}(-1)$ which arises from application of equal and opposite loads on segments of equal length for which

$$
\sigma_{\theta z}(a, 0)=\frac{2}{\pi} T_{1}\left\{\ln \left[\frac{\frac{b_{1}}{a}+\frac{a}{b_{1}}}{\frac{a_{1}}{a}+\frac{a}{a_{1}}}\right]+\ln \left(\frac{b_{1}}{a_{1}}\right)\right\}
$$

The stress concentration for a hole in an infinite plane under remote anti-plane shear may be deduced from (1.2) when $a=b$ as

$$
\begin{equation*}
\sigma_{y z}(a, 0)=2\left(\sigma_{y z}\right)_{\infty} \tag{5.7}
\end{equation*}
$$

The infinite plane with a circular hole is equivalent to a semicircular notch in a semi-finite plane blended with its mirror image. Now substituting $f_{i}(-1), i=1,2$ of (4.1b) into (5.5) yields the maximal stress concentration as

$$
\begin{equation*}
\sigma_{\theta z}(a, 0)=2 T_{1}\left\{\ln \left[\frac{\frac{b_{1}}{a}+\frac{a}{b_{1}}}{\frac{a_{1}}{a}+\frac{a}{a_{1}}}\right]+\ln \left(\frac{b_{1}}{a_{1}}\right)\right\}\left(\frac{1+\gamma}{2 \pi}\right)+2 T_{2}\left\{\ln \left[\frac{\frac{b_{2}}{a}+\frac{a}{b_{2}}}{\frac{a_{2}}{a}+\frac{a}{a_{2}}}\right]+\ln \left(\frac{b_{2}}{a_{2}}\right)\right\}\left(\frac{1+\gamma}{2 \pi}\right) \tag{5.8}
\end{equation*}
$$

In (5.8) each term on the right hand side is composed of $2 T_{i}, i=1,2$ comparable to $2\left(\sigma_{y z}\right) \infty$, of a circular hole in an infinite plane, and $\frac{(1 \pm \gamma)}{\pi} \frac{1}{2} f_{i}(-1), i=1,2$ that contains material constants and is a facilitator of estimates of effects of load site perturbations on the stress concentration.

5.1 Concentrated shear force

The relation [9] $\ln \left(\frac{p}{q}\right)=\frac{p}{q}-1+0\left[\left(\frac{p}{q}-1\right)^{2}\right],\left|\frac{p}{q}-1\right| \pi 1$ implies $\ln \left(\frac{p}{q}\right)=\frac{p}{q}-1$ as $q \rightarrow p$ and
may
be applied to (14.1b) to get

$$
\begin{equation*}
f_{i}(-1)=\left\{\left[\frac{b_{i}-a_{i}}{a}-\frac{a}{a_{i} b_{i}}\left(b_{i}-a_{i}\right)\right]\left(\frac{a_{i}}{a}+\frac{a}{a_{i}}\right)^{-1}+\frac{b_{i}-a_{i}}{a}\right\} \text { as } a_{i} \rightarrow b_{i}, i=1,2 \tag{5.1.1}
\end{equation*}
$$

Shear force τ_{i}, concentrated at a distance b_{i} from the origin is obtained if $T_{i} \rightarrow \infty$ and $\left(b_{i}-a_{i}\right) T_{i} \rightarrow \tau_{i}$ as $a_{i} \rightarrow b_{i}$. With such consideration, (5.9) leads to $T_{i} f_{i}(-1)=2 \frac{\tau_{i}}{b_{i}}\left[\frac{b_{i}}{a}\left(\frac{b_{i}}{a}+\frac{a}{b_{i}}\right)^{-1}\right] \quad$ as $a_{i} \rightarrow b_{i} T_{i}\left(b_{i}-a_{i}\right) \rightarrow$
$\tau_{i}, i=1,2$ which substituted into (5.5) gives the state of the stress concentration at the tip of the notch due to prescribed concentrated shear force. Division by b_{i} to get $\frac{\tau_{i}}{b_{i}}$ in the expression for $T_{1} f_{1}(-1)$ was introduced for dimensional consistency (see for example equation (4.2) in [8]). Here, $T_{1} f_{1}(-1)=2 \frac{\tau_{i}}{b_{i}}$, when $a=0$. The case $T_{2}=0$ gives stress $\sigma_{\theta z}(a, 0)$ due to concentrated share force τ_{i} as

$$
\frac{b_{1}}{\tau_{1}} \sigma_{\theta z}(a, 0)=\frac{2}{\pi}(1-\gamma)\left(x^{2}+1\right)^{-1}, x=\frac{a}{b_{1}} \pi 1=\frac{2}{\pi}(1-\gamma) x^{2}\left(x^{2}+1\right)^{-1}, x=\frac{b_{1}}{a} \phi 1
$$

and is used to study the variation of $\sigma_{\theta z}(a, 0)$ relative to $\frac{a}{b_{1}}$ or $\frac{b_{1}}{a}$ under the prescribed concentrated loads as shown in Figure 4.

Figure 1: The semicircular notch and load sites (not necessarily Symmetric): $\left[a_{1}, b_{1}\right]$ for T_{1} and $\left[a_{2}, b_{2}\right]$ for T_{2}

Figure 2: Corresponding load site in the ρ, ϕ - plane (not necessarily symmetric)

Figure 3: Variation $\frac{\sigma_{\theta z}}{T}(a, 0)$ with $\frac{a}{b_{1}}\left(\right.$ or $\left.\frac{b_{1}}{a}\right)$ for various values of L

$$
\frac{a}{b_{1}} \quad \frac{b_{1}}{a}
$$

Figure 4: Variation of $\frac{b_{1} \sigma_{\theta z}}{\tau_{1}}(a, 0)$ with $\frac{a}{b_{1}}\left(\right.$ or $\left.\frac{b_{1}}{a}\right)$ under concentrated shear force

References

[1] L. H. Mitchel, Stress concentration at a semicircular notch. Journal of Applied Mechanics, Vol. 32, 1965, pp 938-939.
[2] J. R. Rice, Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear, Journal of Applied Mechanics, Vol. 33, 1967, pp 287-298
[3] J. R. Rice, Mathematical Analysis in the mechanics of fracture: In fracture an Advanced Treatise (H. Liebowitz, Ed.) Vol. II, Academic Press, New York, 1968, pp 191-311
[4] J. F. Knott, Fundamentals of fracture mechanics, John Wiley and Sons, New York, 1973, pp 29-31
[5] U. B. C. O. Ejike, Symmetrically notched elastic bar. International Journal of England, 1973, Vol II, pp 1175 -1183.
[6] J. N. Nnadi, A Neuman Problem for an elastic cylinder under out-of-plane loading, Global Journal of Pure and Applied Sciences, Vol. 7, No. 3, 2001, pp 541-544.
[7] J. N. Nnadi, Longitudinal shear deformation of a composite cylinder sectionally loaded across interface edges, Journal of Nigerian Association of Mathematical Physics, Vol 6., 2002.
[8] E. H. Hwang, et al., Inclined edge crack in two bonded elastic quarter planes under out-of-plane loading. International Journal of Fracture, 1992, 56, pp R39-R49.
[9] R. V. Church et al., Complex variables and applications McGraw Hill Kogakusha Ltd. Tokyo, 1974, p 161.

