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Abstract

A set of single-particle energies together with at ©f two-body
matrix- elements derived in a self —consistent manifrom the Reid soft—core
potential are used to calculate the energy levei$®le. We used a harmonic
oscillator wave function folded with two-body cotagion functions in our
calculation. It is found that the calculated speetragree very well with
experiment and the best available shell-model cddtions by other workers.
As a result we have demonstrated that it is possittb calculate the
spectroscopy of nuclei microscopically and self-satently in such a way
that both the single —particle energies and theesffive two-body interactions
are derived from the same procedure.
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1.0 Introduction

One of the greatest achievements of the shell muatebeen its ability to predict energy levels of
nuclei and other unclear quantities such as eleetgmetic properties. It has however, been diffitol
have a single self-consistent approach in the ohét@tion of the input data to the shell-model ckltians.
These input data consists of a set of single-gartinergies on the one hand and a set of two-baatyixm
elements on the other. One very popular appraathe determination of these quantities is the eogi
method where the set of single-particle energigetteer with the set of effective two-body interans
previously determined from realistic forces areatieel as free parameters. These are then adjustiéd un
they fit the experimental spectrum. This approaab been studied extensively by Wildenthal [1] aad h
produced very popular effective interactions. Amotlapproach is to insist on the original two-body
effective interaction derived from realistic fordeg to include those quantities missing in theottyawhich
might hopefully improve the data. This approacmpiered by Kuo and Brown [2], Irvine and co-workers
[3] etc, has been popular over the years becaggees further room for the understanding of nuckiata
in terms of the effective interaction in a fundataémvay. While each of these approaches has tveir
merits, they notoriously lack self-consistency mpeach. For example, in the empirical approaatedhe
two-body matrix elements and single-particle eresgire adjusted to fit experimental data, theyddbsir
original meaning. The two-body effective interaatiand the set of single-particle energies thatrgenare
quite different from their original counterpart©n the other hand, most microscopic calculationsil@vo
insist on retaining most of the features of theroscopic two-body effective interactions but théeit
single-particle energies are usually computed fesqmerimental data [4]. It is not at all clearhifd method
is truly microscopic in approach since the two dites are determined from different considerations
Some years ago, we generated a simple mass-depeaffetive nucleon interaction by folding togettzer
Hamiltonian for the rest-frame of the nucleus basedhe Reid [5] soft-core potential with a simpkt of
two-body correlation functions [6]. We then conwgmhrthis interaction with the universatl-shell
interaction of Wildenthal [1] and found excellergreement. Recently [7], we used the same effective
interaction to derive a set of mass- dependentesiparticle energies for sd shell-model calculagio®ur
aim was to demonstrate that,'f is taken as a closed shell-core &drshell-model calculations as is
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usually the case, then it is possible to obtaiglsiparticle energies across the whole ofdthehell which
are very similar to those derived at the beginmihthe shell. In doing so we hope demonstrate ghatl-
model calculations can be done self-consistentti waasonable level of success with a suitablecehof
these quantities.

The aim of this paper is to use this two-body iat#ion together with the set of single-particlergies of
[7] to determine energy spectra ©¥Ne nuclei in a self-consistent manner. In doingve® hope to
demonstrate that shell-model calculations can be delf consistently with a reasonable level otess
with a suitable choice of these quantities. Thapgy is organised as follows: in Section 2 we give
summary of the method used. In section 3 we prabentesults of the single—particle energies, the t
body effective interaction used and compare owutaled energy spectra with experiment other works
“Ne nuclei. Section 4 is devoted to the conclusibihe paper

20 The shell-model effective interaction

In this section we briefly discuss the approachettgyed in [6,7] for the determination of the one—
and two-body effective interactions. The non- tieistic Hamiltonian for an A-nucleon system
approximated as

Ho=i2%+ZV (r,-r,). 2.1)

whereV, (ri -, )is the NN potential and m is the nucleon mass. NINepotential of equation (2.1) as is

usually the case has a large repulsive compondrithwmakes it impossible to perform direct Hartree-
Fock calculations. In the language of correlatesidbfunctions, the Hartree-Fock trial wave funetio

® = (A)* detq(r)) 2.2)

must be correlated in the form

Y =Fo (2.3)
where the@ are the single-particle basis functions &ni$ a symmetric product of two-body correlation
functions [8]:

F=9Mf,. (2.4)

ij

these correlations were designed to account foeffieet of the strong repulsive component of thel@on-
nucleon interaction whil& is the symmetrizer operator. We next require thatchosen Hamiltonian be

formulated in the rest-frame of the nucleus sinee are only interested in intrinsic quantities. STt
achieved through a unitary transformation [3] dmaltransformed Hamiltonian becomes:

H.~H=H- p’ —z( Py ] (2.5)

oM (M, [F-F)

2
whereM = myA is the total mass of the nucleusp—is the transnational kinetic energy of the centre of

2
i i — P, is the relative momentum of the two interacting pair while
V2

VN(H—F:) is taken to be the Reid [5] soft-core potential. The shetlel calculations are usually

performed in a finite model space since it is impossible terae the many-body energy operator of
equation (2.5) exactly. The usual approach is to approximtiewo-body effective interactions. Using
equations (2.3) and (2.4) we can define our effective two—lbesaction in the form (Fiase et al., [9] ):

H 3= £(1,(i )(L}z(ij) (26)

mass of the nucleusp; =

M +V,
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wheref,(ij) are the two-body correlation operators. In those calculaitiaves required that the two-body
correlation functions should take on the features of the chmstential used, which in our calculation was
the Reid [5] soft-core potential. Since the Reid [5] potehtialthe form

v, =3V} (2.7)

where in the different reaction channelswe have the central, spin-orbit and tensor componersiseihs
reasonable to allow the correlation operators the same degreeddih, i.e .,

L) =X f; (2.8)
where 2=ty )+t A LS +1 A )s, (2.9)
In studies regarding nuclear matter and finite nuclei Irvira.ef3] found three main features of the two-

body correlation functions. There were (i) the ‘wound induitethe two-body wave function by the
repulsive core

of the N-N interaction, (i) the tensor correlations especiallthe S, - °D; channel and, (i) the meson
exchange correction. It was found that the most importantréeafuhese was the tensor correlations and
Irvine et al.[3] parameterized the two-body correlation funciatte form [3]:

£,(i)=0, 1, <r,
B B2 (2.10)
f,(ij)=(1-e " * )1+a's)),

ij >rc

wherer, = 0.25m andf3 = 25m” .the parameterg” represents the strength of the tensor correlaiwhis
non-zero only in théS, - °D; channel. The two-body matrix elements of theatife Hamiltonian defined
in equation (2.6) were calculated in a harmonidllasor basis. The general expression for evahgathe
two-body matrix elements:
<(ab)JT|H?|(cd)JT > AS (2.11)
is reported in [4,7].
Furthermore one can calculate the single-particlergies from the same interaction according to the
equation [9,10]:
(2T +1)(2J +1)
0=y "2"_"2<(k)JT|HZ|(k)JIT > AS, 2.12
I ey S(KITHEIK) (2.12)
where in this equation the sum Kk, is limited to toge states andto the valance space orbitals. In our
calculations of equations (2.8) and (2.9) thereaanly two free parameters. These are the osdilkite
parameter and the strength of the tensor correlatid. We varied these to obtain the best set of tlee on
and two-body effective interactions to calculae?iNe spectra.

3.0 The Results

The two-body effective interactions defined in etpma (2.11) and the set of single-particle
energies defined in equation (2.12) were calculatesl harmonic oscillator basis as reported in][6 &s
discussed earlier we had only two free parametéhigh are, the strength of the tensor correlatenms the
oscillator size parameter. In our calculations thast’ set of data for calculating the two-body mat
elements of A = 20 system argc = 12MeV and & = 0.085. These were determined by comparing our
two-body matrix elements with those of the fittingutines of Chung and Wildenthal [11] and the

Wildenthal [1] universal sd-shell interaction. Wsed the variance) , defined by
ME._ (i)-ME_(i))*
y, =3, (ME()-ME.(1)
ME. (i)
whereMEg (i) andMEc (i) are the fitted and our calculated two-body masiements respectively. We
found in our earlier calculations that in orderotmtain a good level of agreement between the tuo afe
data, a constant shiff\; had to be applied to all the 28 diagonal matrements while keeping all the 35

non-diagonal matrix elements the same. Such &whs found to vary smoothly with the variance and
reaches a minimum as shown in Figure 1 where time s plotted for the A = 20 system. For this case
obtained the minimum variance 6f0.03 for the shift in energy of 1/8eV to all the diagonal matrix
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elements. This shows an excellent level of agre¢rnetween the two sets of data. This procedure was
repeated for other combinations of these parambtgrthe “best” parameters turned out to be theseho
set above. Such a shift as shown earlier will atnge the spectroscopy of any isobaric states exoep
relative binding energies. Using similar argumerg@bove, the single-particle energies definedjiragon
(2.12) were calculated fom = 0.085and nw =12MeV and an optimum constant shift applied to all @nth

to obtain their optimum values presented in TableThese values are not in very good agreement with
experiment but if we usgw = 13VleV which is more appropriate for this region of nuead a = 0.085,
the optimized calculated single-particle energigs out to be in very good agreement with experimen
These are the values later used in our calculation.

In Figure 2, we present the experimental [12] pasiparity states o’Ne together with the result
of a straight shell- model calculation using outeraction and the universal sd-shell (USD) effextiv

interaction of Widenthal [1]. A state is denoted 8" ; T where J denotes the total angular momentum of

the two-particle system while T is their correspogdisospin. From the figure we see that the fiosir
experimental level®;; 0, 27; 0, 47;0 and 0;; O at energies of 0.0, 1.63 4.25 and 6M®&V respectively
are well reproduced by

our interaction, which predicts them at 0.0, 1882 and 5.9MeV respectively. The experimental states
0;; 0, 2;; 0,0;; 0 and 2;; Oappearing at energies, 7.19, 7.83, 8.30 andv@\d are intruder state [13,
14, 15] and cannot be reproduced in a calculatian ¢onsiders®O as a closed-shell core so we did not
expect to see them in our calculation. Our cated®’; O0appears at an energy of 788V compared to

its experimental counterpart at 8.IW&V. The calculateds]; Gtate in question actually reverses order
with our calculated2;; Qwhich appears at an energy of 8M&V, the order which the USD interaction
has maintained with experiment. The next experialed,; O state at an energy of 9.08eV is an
intruder state [13.14,15]. However the next experital 2;; O state at an energy of 9.48 MeV and the
experimental4;; Oat an energy of 9.9®eV are well reproduced by our calculation which pism at

10.2 and 9.9MeV respectively. It is interesting to note that th8D interaction also predicts th€; 0

experiment state at an energy of 9@V in our calculation. Beyond the MeV energy mark there is no
one to one correspondence between our calculagrd\elevels and experiment. This is also the edte

the USD interaction. In fact we went further tdcotate the density of states above theMidy mark and
found them to be similar both with experiment aind USD interaction, although our calculated speistra
slightly more compressed compared to the USD inotema and experiment. This fact has also been
observed in [4] concerning forces with strong tensmmponents which the Reid [5] NN forces belongs.
Our calculation shows however, that we can conéibout 8 states iffNe below 10MeV mark, which are
shell-model states.

4.0 Conclusions

We have calculated the energy spectrdé with the aim to show that shell-model calcutasio
can be performed self-consistently when both effectwo-body interactions and the single-particle
energies are derived microscopically in a self-esiteat manner. This approach allows us to predictear
properties in a fundamental way. This is in corittasthe other methods like the empirical approache
which start with an assumed set of parameters laga dptimize them to fit experimental data. In most
microscopic shell- model calculations, the set @fo-body effective interactions are derived
microscopically but the set of single —particle rgjies are extracted from experiment [4]. FPée, which
has been chosen as an example for our investigatiay rather be a trivial example of a shell-model
calculation [16]. Indeed several successful sheltteh calculations of’Ne have been performed including
core breaking [14]. Here we have not engaged imilget comparison including core breaking in our
analysis. In fact our approach is designed to laslqtiestion: Is it possible to determine nucleaperties
form a completely microscopic self-consistent shatidel approach? Our modest attempt gives theemsw
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in affirmative and as such being a first principfgroach to the shell-model calculation we do oosaler
the example trivial.
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Table 1: Optimized single—particle energiesAer20 system, foildl = 0.085 andnw = 12MeV andd = 0.085 andnw = 13MeV.

a r](A: A E-:1/2 E-:3/2 E-:5/2
0.085 MeV 20 -270 0.55 -3.35
0.085 13/eV 20 -3.13 0.86 -4.86

Expt. -3.27 0.95 -4.14

Notice the close agreement with their experimetdahterparts especially for the second set of patars

Figure 1: Calculated variance with shift in two-lgodatrix eIementsAsd
<68,

, for A= 20 system:0 = 0.085 andnw = 12MeV.
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Notice the smooth variation of the variance witkitsh energy.

Figure 2: Calculated energy spectrg®fe nuclei compared with experiment and USD intésacadf Wildenthal ford = 0.085 and
N& = 13VeV.
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Single-particle energies used for the get 0.085 andnw = 13VeV.
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