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Abstract 

 
A set of single-particle energies together with a set of two-body 

matrix- elements derived in a self –consistent manner from the Reid soft–core 
potential are used to calculate the energy levels of 20Ne.  We used a harmonic 
oscillator wave function folded with two-body correlation functions in our 
calculation. It is found that the calculated spectra agree very well with 
experiment and the best available shell-model calculations by other workers. 
As a result we have demonstrated that it is possible to calculate the 
spectroscopy of nuclei microscopically and self-consistently in such a way 
that both the single –particle energies and the effective two-body interactions 
are derived from the same procedure. 
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1.0 Introduction 

One of the greatest achievements of the shell model has been its ability to predict energy levels of 
nuclei and other unclear quantities such as electromagnetic properties.  It has however, been difficult to 
have a single self-consistent approach in the determination of the input data to the shell-model calculations. 
These input data consists of a set of single-particle energies on the one hand and a set of two-body matrix 
elements on the other.  One very popular approach in the determination of these quantities is the empirical 
method where the set of single-particle energies together with the set of effective two-body interactions 
previously determined from realistic forces are treated as free parameters. These are then adjusted until 
they fit the experimental spectrum. This approach has been studied extensively by Wildenthal [1] and has 
produced very popular effective interactions. Another approach is to insist on the original two-body 
effective interaction derived from realistic forces try to include those quantities missing in the theory which 
might hopefully improve the data. This approach pioneered by Kuo and Brown [2], Irvine and co-workers 
[3] etc, has been popular over the years because it gives further room for the understanding of nuclear data 
in terms of the effective interaction in a fundamental way.  While each of these approaches has their own 
merits, they notoriously lack self-consistency in approach.  For example, in the empirical approach once the 
two-body matrix elements and single-particle energies are adjusted to fit experimental data, they loose their 
original meaning.  The two-body effective interaction and the set of single-particle energies that emerge are 
quite different from their original counterparts.  On the other hand, most microscopic calculations would 
insist on retaining most of the features of the microscopic two-body effective interactions but then their 
single-particle energies are usually computed from experimental data [4].  It is not at all clear if this method 
is truly microscopic in approach since the two quantities are determined from different considerations.  
Some years ago, we generated a simple mass-dependent effective nucleon interaction by folding together a 
Hamiltonian for the rest-frame of the nucleus based on the Reid [5] soft-core potential with a simple set of 
two-body correlation functions [6].  We then compared this interaction with the universal sd-shell 
interaction of Wildenthal [1] and found excellent agreement.  Recently [7], we used the same effective 
interaction to derive a set of mass- dependent single-particle energies for sd shell–model calculations.  Our 
aim was to demonstrate that, if 16O is taken as a closed shell-core for sd shell-model calculations as is 



Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004. 
A review of 20Ne structure            J. O. Fiase, H. E. Agba. A. A. Akombor and 
Frederick Gboarun J. of NAMP 

usually the case, then it is possible to obtain single-particle energies across the whole of the sd shell which 
are very similar to those derived at the beginning of the shell.  In doing so we hope demonstrate that shell-
model calculations can be done self-consistently with reasonable level of success with a suitable choice of 
these quantities.   
 
 
 
 
 
The aim of this paper is to use this two-body interaction together with the set of single-particle energies of 
[7] to determine energy spectra of 20Ne nuclei in a self-consistent manner.  In doing so we hope to 
demonstrate that shell-model calculations can be done self consistently with a reasonable level of success 
with a suitable choice of these quantities.  This paper is organised as follows: in Section 2 we give a 
summary of the method used. In section 3 we present the results of the single–particle energies, the two 
body effective interaction used and compare our calculated energy spectra with experiment other works on 
20Ne nuclei. Section 4 is devoted to the conclusion of the paper 

 
2.0 The shell-model effective interaction  

In this section we briefly discuss the approach developed in [6,7] for the determination of the one–
and two-body effective interactions.  The non- relativistic Hamiltonian for an A-nucleon system 
approximated as 
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where 
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− )( jiN rrV is the NN potential and m is the nucleon mass.  The NN potential of equation (2.1) as is 

usually the case has a large repulsive component, which makes it impossible to perform direct Hartree-
Fock calculations.  In the language of correlated basis functions, the Hartree-Fock trial wave function: 
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must be correlated in the form  
     Φ=Ψ F     (2.3) 

where the iφ  are the single-particle basis functions and F is a symmetric product of two-body correlation 

functions [8]: 
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these correlations were designed to account for the effect of the strong repulsive component of the nucleon-
nucleon interaction while S is the symmetrizer operator.  We next require that our chosen Hamiltonian be 
formulated in the rest-frame of the nucleus since we are only interested in intrinsic quantities.  This is 
achieved through a unitary transformation [3] and the transformed Hamiltonian becomes: 
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where M = mNA is the total mass of the nucleus, 
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−  is taken to be the Reid [5] soft-core potential.  The shell-model calculations are usually 

performed in a finite model space since it is impossible to determine the many-body energy operator of 
equation (2.5) exactly.  The usual approach is to approximate it to two-body effective interactions.  Using 
equations (2.3) and (2.4) we can define our effective two–body interaction in the form (Fiase et al., [9] ): 
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where f2(ij) are the two-body correlation operators.  In those calculations it was required that the two-body 
correlation functions should take on the features of the chosen potential used, which in our calculation was 
the Reid [5] soft-core potential. Since the Reid [5] potential has the form  
     ∑=

λ

λ
ijij VV     (2.7) 

where in the different reaction channels λ  we have the central, spin-orbit and tensor components, it seems 
reasonable to allow the correlation operators the same degree of freedom, i.e ., 
     ∑=
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In studies regarding nuclear matter and finite nuclei Irvine et al., [3] found three main features of the two-
body correlation functions.  There were (i) the ‘wound induced in the two-body wave function by the 
repulsive core  
 
 
of the N-N interaction, (ii) the tensor correlations especially in the 3S1 - 

3D1 channel and, (iii) the meson 
exchange correction. It was found that the most important feature of these was the tensor correlations and 
Irvine et al.[3] parameterized the two-body correlation function in the form [3]: 
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where rc = 0.25fm andβ = 25fm-2 .the parameter, λα  represents the strength of the tensor correlation and is 

non-zero only in the 3S1 - 
3D1 channel.  The two-body matrix elements of the effective Hamiltonian defined 

in equation (2.6) were calculated in a harmonic oscillator basis.  The general expression for evaluating the 
two-body matrix elements: 
    ASJT)cd(|H|JT)ab( )(

eff >< 2    (2.11) 

is reported in [4,7]. 
Furthermore one can calculate the single-particle energies from the same interaction according to the 
equation [9,10]: 
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where in this equation the sum k, is limited to the core states and l to the valance space orbitals.  In our 
calculations of equations (2.8) and (2.9) there are only two free parameters.  These are the oscillator size 
parameter and the strength of the tensor correlation, λα .  We varied these to obtain the best set of the one-
and two-body effective interactions to calculate the 20Ne spectra. 
 
3.0 The Results 

The two-body effective interactions defined in equation (2.11) and the set of single-particle 
energies defined in equation (2.12) were calculated in a harmonic oscillator basis as reported in [6,7].  As 
discussed earlier we had only two free parameters, which are, the strength of the tensor correlations and the 
oscillator size parameter. In our calculations our ‘best’ set of data for calculating the two-body matrix 
elements of A = 20 system are ωη  = 12MeV and α = 0.085. These were determined by comparing our 
two-body matrix elements with those of the fitting routines of Chung and Wildenthal [11] and the 

Wildenthal [1] universal sd-shell interaction. We used the variance, Fχ , defined by  
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where MEF (i) and MEc (i) are the fitted and our calculated two-body matrix elements respectively.  We 
found in our earlier calculations that in order to obtain a good level of agreement between the two sets of 

data, a constant shift, sd∆  had to be applied to all the 28 diagonal matrix elements while keeping all the 35 

non-diagonal matrix elements the same.  Such a shift was found to vary smoothly with the variance and 
reaches a minimum as shown in Figure 1 where the same is plotted for the A = 20 system. For this case we 
obtained the minimum variance of ≈ 0.03 for the shift in energy of 1.5 MeV to all the diagonal matrix 
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elements. This shows an excellent level of agreement between the two sets of data. This procedure was 
repeated for other combinations of these parameters but the “best” parameters turned out to be the chosen 
set above. Such a shift as shown earlier will not change the spectroscopy of any isobaric states except their 
relative binding energies. Using similar arguments as above, the single-particle energies defined in equation 
(2.12) were calculated for ω=α ηand.0850  =12MeV and an optimum constant shift applied to all of them 

to obtain their optimum values presented in Table 1.  These values are not in very good agreement with 
experiment but if we use ωη = 13MeV which is more appropriate for this region of nuclei and α = 0.085, 
the optimized calculated single-particle energies turn out to be in very good agreement with experiment. 
These are the values later used in our calculation. 

In Figure 2, we present the experimental [12] positive parity states of 20Ne together with the result 
of a straight shell- model calculation using our interaction and the universal sd-shell (USD) effective 

interaction of Widenthal [1].  A state is denoted by π
iJ ; T where J denotes the total angular momentum of 

the two-particle system while T is their corresponding isospin.  From the figure we see that the first four 
experimental levels 00040200 2111 ;and;,;,; ++++  at energies of 0.0, 1.63 4.25 and 6.73 MeV respectively 

are well reproduced by  
 
 
 
 
our interaction, which predicts them at 0.0, 1.66, 3.82 and 5.92 MeV respectively.  The experimental states 

02000200 4433 ;and;,;,; ++++ appearing at energies, 7.19, 7.83, 8.30 and 9.0 MeV are intruder state [13, 

14, 15] and cannot be reproduced in a calculation that considers 16O as a closed-shell core so we did not 
expect to see them in our calculation.  Our calculated 061 ;+  appears at an energy of 7.89 MeV compared to 

its experimental counterpart at 8.78 MeV.  The calculated 061 ;+  state in question actually reverses order 

with our calculated 022 ;+ , which appears at an energy of 8.21 MeV, the order which the USD interaction 

has maintained with experiment.  The next experimental 042 ;+  state at an energy of 9.03 MeV is an 

intruder state [13.14,15]. However the next experimental 025 ;+  state at an energy of 9.48 MeV and the 

experimental 043 ;+  at an energy of 9.99 MeV are well reproduced by our calculation which puts them at 

10.2 and 9.97 MeV respectively.  It is interesting to note that the USD interaction also predicts the 043 ;+  

experiment state at an energy of 9.97 MeV in our calculation.  Beyond the 10 MeV energy mark there is no 
one to one correspondence between our calculated energy levels and experiment.  This is also the case with 
the USD interaction.  In fact we went further to calculate the density of states above the 10 MeV mark and 
found them to be similar both with experiment and the USD interaction, although our calculated spectra is 
slightly more compressed compared to the USD interaction and experiment.  This fact has also been 
observed in [4] concerning forces with strong tensor components which the Reid [5] NN forces belongs.  
Our calculation shows however, that we can confirm about 8 states in 20Ne below 10 MeV mark, which are 
shell–model states. 

 
4.0 Conclusions 

We have calculated the energy spectra of 20Ne with the aim to show that shell-model calculations 
can be performed self-consistently when both effective two-body interactions and the single-particle 
energies are derived microscopically in a self-consistent manner. This approach allows us to predict nuclear 
properties in a fundamental way. This is in contrast to the other methods like the empirical approaches 
which start with an assumed set of parameters and then optimize them to fit experimental data. In most 
microscopic shell- model calculations, the set of two-body effective interactions are derived 
microscopically but the set of single –particle energies are extracted from experiment [4].  The 20Ne, which 
has been chosen as an example for our investigation, may rather be a trivial example of a shell-model 
calculation [16]. Indeed several successful shell-model calculations on 20Ne have been performed including 
core breaking [14]. Here we have not engaged in detailed comparison including core breaking in our 
analysis. In fact our approach is designed to ask the question:  Is it possible to determine nuclear properties 
form a completely microscopic self-consistent shell-model approach?  Our modest attempt gives the answer 
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in affirmative and as such being a first principle approach to the shell-model calculation we do not consider 
the example trivial. 
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Table 1: Optimized single–particle energies for A= 20 system, for α = 0.085 and ωη  = 12MeV andα  = 0.085 and ωη = 13MeV. 

α   ωη   A  21 /ε   23 /ε   25 /ε  

0.085  2MeV  20  -270  0.55  -3.35 
0.085  13MeV  20  -3.13  0.86  -4.86 

     Expt.  -3.27   0.95  -4.14 
Notice the close agreement with their experimental counterparts especially for the second set of parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Calculated variance with shift in two-body matrix elements, sd∆ , for A = 20 system: α  = 0.085 and ωη = 12MeV. 

 
Notice the smooth variation of the variance with shift in energy. 
 
Figure 2: Calculated energy spectra of 20Ne nuclei compared with experiment and USD interaction of Wildenthal for α = 0.085 and 

ωη = 13MeV. 
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Single-particle energies used for the set α  = 0.085 and ωη  = 13MeV. 
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