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Abstract 

 
In this paper environmental pollution has been modeled 

mathematically using the Freundlich non-linear contaminant transport 
formulation.  An analytical solution of lower order perturbation of the 
concentration C ),( tx is obtained.  Flow profiles for various values of 

molecular diffusion D and the velocity U are studied and the effects of these 
parameters on the flow regimes highlighted. 
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1.0 Introduction 

Computational fluid dynamics has grown to become a versatile tool for the investigation of 
transport phenomena.  Application of this abounds in the various fields of engineering, science and 
medicine.  Great advancement in the numerical techniques and their implementations in very efficient flow 
simulation codes together with astronomical growth in computer power have provided this field of research 
with the maturity to compete the more familiar classical methods (experimental and analytical methods) 
with a similar level of accuracy and hence reliability of results.  In addition computational fluid dynamics 
(CFD) offers a greater flexibility in the specification of problem conditions. Not only the boundary and the 
fluid properties can be well controlled but certain physical effects may be isolated or supported thus 
creating new perspectives to the research and application of fluid dynamics.  The present work will profit 
immensely from the above-mentioned advantages of numerical investigation approach and employ them 
effectively in the detailed analysis of the contaminant transport as it pertains to environmental pollution. 

 
2.0 Mathematical Modelling and Formulation of Physical Problems 

The concentration C(x,t) of the contaminant is governed by the differential equation  
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where U is the effective velocity of flow, Pb is the bulk density of porous medium, n the porosity of 
medium, S the mass of contaminant absolved and D is the molecular diffusion/ mechanical dispersion. For 
simplicity we assume these parameters to be constant.  Now since the mass of contaminant absorbed 
depends much more on time than on the concentration the equation above is of the form 
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Equation (2.2) is therefore the mathematical model representing our physical problem. 
2.1 Solution technique  

The concentration C(x,t) is expanded with ε  as the perturbation parameter.  That is 

++++= ),(),()1(),(),( )3(3)2(2)0( txCtxCCtxCtxC εεε   (2.3) 

The substitution of equation (2.3) into equation (2.2) results in the following: 
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Hence neglecting orders two and all higher orders for obvious reason we therefore have to solve the 
following system of homogenous differential equations: 
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The solution of our contaminant problem is therefore given as;  
    ),(),(),( )1()0( txCtxCtxC ε+=    (2.6) 

2.1.1 Solution of the order (1) problem 
We recall that the order (1) problem is represented by the following initial boundary value 

problem: 
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Adopting the separation of variable technique we have the following two uncoupled ordinary differential 
equations in the independent variables :tx and  
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where we have assumed here that C(0) 20)()(),( λχ andtTxtx ≠=  is an arbitrary constant.  On applying the 

boundary and initial conditions after solving we have that Te)t(T 2λ−=  
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problem is given as; 
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Consequently the order (ε ) problem is governed by the initial boundary value problem; 
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Taking the Laplace transform of equation (2.1.4) in the time domain results in the following ordinary 
differential equation: 
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where y is the Laplace transform of C(1) ( tx, ) and s is the Laplace parameter the complimentary function 

of equation  (2.11) is given as )cossinh()( 2 xxexy D
Ux
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are arbitrary constants of integration.  Adopting the variation of parameter technique the particular integral 
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On applying the corresponding boundary conditions we thus obtain; 
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3.0 Numerical Computation 
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In what follows we investigate the influence of the parameters such as the molecular diffusion (D), 
the velocity (U) and distance ( x ) on the concentration profiles C( x ,t). 
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4.0 Result  

The numerical simulations above indicate decrease in the concentation with increasing molecular 
molecular diffusion (D) and decreasing velocity (U).  It also shows decrease in the concentration of the 
pollutant as we move from the source point which agrees completely with physical observation. 
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