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Abstract

In thiswork, higher order optimal window width is used to generate
bootstrap kernel density likelihood. A simulated study is conducted to
compare the distributions of the higher order bootstrap likelihoods with the
exact (empirical) bootstrap likelihood. Our results indicate that the optimal
window width of orders 2 and 4 perform better than those of higher orders.
The higher order kernels (= 6) provided window widths, which obscured the
details of the distribution when the exact bootstrap likelihood was taken to be
thetrue density.

Keywords: Higher order kernels, exact bootstrap empiride¢lihood, Bootstrap kernel likelihood, optimal wow
width.
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1.0 Introduction

A variety of kernel functions have been propos&hme references include [3], [14], [17], [18]
and [19]. The choice of the optimal window width kernel density estimation has been crucial. The
optimal window width determines the form of thetdizution since it controls the degree of smoothing
applied to a data set. Of importance is the keongér, which can have a major impact on finite gi@m
Mean Integrated Square Error (MISE) even in snatgles. Hansen in [10] proposed selecting theegkern
order by the criterion of minimize regret, where tlegret is maximized over a set of Marron—-Wanf®]jn
test density function. The work of [6] among othdéias drawn attention to higher order kernels. irThe
work placed emphasis on the fourth order kernetstlie Gaussian, skewed unimodal, outlier and the
separated bimodal densities. However, [9] shoveatiee that the fourth order kernels are of littige for
small samples. The concept of higher orders irsitlerestimation is being proposed with a view of
enhancing the performance of the estimate of tmsitle(see [2003). Thus, the justification for higher
order optimal window width as used in this worknssefrom the fact that the rate of convergence ef th
density estimator to the actual density dependtheramount of smoothness typically quantified imie
of the number of bounded derivatives of the undeglydensity. For a random samplg X,, Xa, ..., X
from a random variabl¥ with unknown density functionf (x), let us consider the function

f(x) == k(x-X,) (1.2)
ni=
wherek(x) is a non-negative function which normalizes tatyun The function 1]‘(x) is a kernel density
estimator (of the unknown density(x)) with k(x) as the kernel function. The scaled version ef th

u] o n - X.
estimate f(x) in (1.1) is of the form f(x) =12%k[x hXI j
ni=u
(1.2)
whereh is the smoothing parameter. Equation (1.2) isegdly referred to as the kernel density function.
Small values oh in (1.2) lead to spurious noise at the tails @& thstribution while large values of
obscures the details of the tails of the distrinut{see [4], [19] ). A balanced choice of the sthog
O
parametemh in (1.2) would produce the best kernel densitynestor f . The choice oh has bothered

many researchers and several optimal mathematipaessions foh can be found in the literature. (see
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[6], [9], [10], and [12].). Mathematically, a globaccuracy of the estimaté(x) is evaluated via the Mean
integrated square error (MISE), which is expresasd,

MlSE(?(x)) = E{j(?(x)— f(x))zdx} = | Bias®( x)dx+jVar(?(x)j dx  (1.3)

A mathematical derivation of (1.3) would show thhe integral bias and the integral variance are

-1

proportional toh? and (nh) respectively. Hence, a reduction in the varigmaluces an increase of the

bias, while a smaller h immediately reduces thea biat increases the variance. Methods of dealiitly w
this imbalance in

the density off led to other density estimators such as adaftwmeel estimators of the form:

fxy=te 1 [ X=X
f(x)_ngl)\ihk( - ] (1.4)

where A ; are quantities related to the local density at ®ur approach of dealing with the optimal choice

of the smoothing paramethris not through the adaptive kernel method. Ratlverseek to work through

higher order kernels, get an appropriate higheemagptimal window width, which balances the intaspl

between the bias and the variance terms of the MIBlus through empirical results of an example of

bootstrap generated likelihood we seek:

i. to provide higher order bootstrap generatediliked.

ii. to examine the similarities between the varibigher order optimal window width (indeed higher
order kernels).

iii. to make comparisons between the higher oradgndds using the results for the various optimal
window widths.

iv. make a recommendation of the “best” higher oralgtimal window width. Best here means in
terms of fit.

The rest of the paper is organized as follows: ti®e@ deals with a brief review of higher order
kernels, while section 3 specifically introducegh@r order forms of optimal window width (i.e. sntitiag
parameter) for bootstrap generated likelihood. oligh theoretical and simulation comparisons, higher
order kernels are examined in this work. Generdltg works of [6], [8], [9], have given a lead timis
direction. Results of simulation are given in gat¥ and in section 5; we give our recommendateom
conclusion.

2.0 Higher order kernels
When the following conditions: (. |2 k(t)dt= 1 (i)
[T k(t)dt=[t*k(t)dt=A =[" t™'k(t)dt=0 (iii) [" t"k(t)dt=V_ #Owere imposed on symmetric

kernels, [12] obtained the optimal window width as:
1

h = {M}Mvm‘znfu{k(tfdt}znfﬂ {1 tm(x)ax} e n e @2

2m
for meven (i.e. fom= 2, 4, 6, 8, ....). Equation (2.1) is equivalemt t
1
I L S
h,, ={—((2T)') } V, ik (t)?dtfama{ [ £ @™ (x)?dx} o n (2.2)
m

form=1, 2, 3, ....,< o obtained earlier in [13] with milder conditiongones and Signorini in [6] used
similar conditions to obtain the fourth order kdrofthe form:

S, —-S,u’)K
K(Z)(U)=( 4 542118)22 (u) 2.3)

where S, = > u’k(u )u, andk(u) is a kernel function. Specifically, fifis the normal distribution i.e
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F(x)= = e'i[ﬂj (2.4)

ov/2m o
andk is the Gaussian kernel i.E(x):%e_ixZ then by Taylor series expansion, [12] obtained the
optimal values for any order bf, to be: "
~ | (m) * ;

n = (2.5)

m, opt

S ETIeET)

We now apply (2.5) in generating higher order fasfithe bootstrap kernel likelihood, and examine the
results to be obtained for each order 2, 4, 6, 8,... . This is done in sections 3 andTe practical
problem posed by the expressions in (2.1) and (8.B)at the ideal optimal window width of any orde
depends on the unknown dendityln order to provide a practical solution to fhreblem of kernel order
selection, we adopt a bootstrap, approach

to generate likelihoods whose densities are condparth those of the “true” density. Our approaeim c
easily be implemented in practice.

3.0 Higher order Bootstrap likelihood
Suppose the transformed data get= (y1 A ,...,yn)e based on a realized data zgtx,, ... X, are

iid with cdf F not depending o®. Suppose the statistic of interest estimatechertransformed data set
is T, :t(ye). This could be any contrast of parameters. Raysthe values ofy, and for each

bootstrap configuration, calculaig’ =t(y§) and list them in some ordef,”, T, ,...,T; then, the empirical
cdf will be of the form: P (t| 9):%#{]3 < t}

(3.1)
where # stands for cardinality. The empirical ied§3.1) is smoothed by using the kernel densitinestor

to obtain a continuous densith/T(t|e) (which is the bootstrap likelihood). Simply ptite bootstrap
kernel likelihood is the density of the bootstrague T, at t,, where T =t(y§) sampled randomly from

the transformed data séyf,yzj,....,yf)e. Thus, at the point where the cdf in (3.1) is sthed (by the
kernel density estimator), we get the kernel boagslikelihood to be:

2 1e (t-T
LY(0)=f p(t)=—3K ' 3.2
(>Tg()Bhiz_l[hJ (32)
where TiD:Ti(yGD), i = 1(1)B, are the bootstrap values of any contrat parameters,

Yo = (Yf Y, ,yE....,ynD)e are the bootstrap values of the transformed dettindexed by . tis the actual

value of the contrast, B is the number of bootstrapfigurations, while Kj and h have their usual
meanings. Thei" (m even) order bootstrap kernel likelihood is legiven as:

1 B t-T"

L (0)= K ' 3.3
m( ) B hm,opt E [ hm,opt j ( )

wherehy, opds as defined in equation (2.5). By adopting eigma(3.3), one can now generate higher order

bootstrap kernel likelihood. This idea is usedéction 4 to generate the densities of bootstkagtitioods

for a simple contrast of difference of means udnigher order window widths. The exact bootstrap
likelihood is rather simple to generate, especiallth the advent of high-speed computers. The texac
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bootstrap likelihood is generated by simply doingoant of the proportion of; values, which lie within
some intervals around j. For some 0, the exact empirical bootstrap likelihood on@y the bootstrap
likelihood is defined as:

L(G)=%(Tf

We remark that the value efis also very crucial and care must be exercisedrder to make a good
subjective choice.

t-g sTjDsf+sj (3.4)

4.0 Results of simulation

Our example consists of a simple two-sample prokdi@mwhich the contrast of interest is the
difference of mean. Each of the two samples ctmsi$ 12 observations of results of laboratory
experiment concerning rat's immune resistance o vexccine. By following the procedure for genergti
bootstrap likelihood, equally spaced valuesBofwere chosen for the transformation of the origidata
sets. The transformed data sets were bootstragpedhe bootstrap kernel likelihoods were evenguall
generated. This was done for each param@tand for each higher order optimal window widti the
application of the higher order optimal window widtve tookf(x) to be a normal distribution angx) to
be the Gaussian kernel. The application of egnaf®3) yielded the graphs of the distribution bé t
generated higher order bootstrap likelihoods, wisith shown in Figure 1. Also shown in figure hs
distribution of the exact bootstrap likelihood. uBhthe graphs in figure 1, give the bootstrapriistion
functions for the “differences of means” at theioas higher order optimal window width.

1.4 1
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0.8 +
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Likdihoods
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0.6 +
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Figure 1: Densities of the Exact Likelihood andsthof the Higher Order Kernel Bootstrap Likelihoods

Generally, the picture of the higher order bootstikelihood densities for orders 2, 4, 6, 8, 1P, 14 and
30 presented in figure 1 are of the same form.s Thobviously so since they all stemmed from trae
generating seeds. To generate each of the bgotstrmel likelihood that gave rise to the densiiies
figure 1, we assumefl(x) to be a normal density (X) to be the Gaussian kernel and did a bootstrap of
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3,000 for each paramet&. From looking at the pictures of the nine deasiiin figure 1, we believe that
it is fair to say that in situations where the &tudensity is the one provided by the exact boaypstr
likelihood, the densities of orders 2 and 4 areeamdominant in terms of fit. The shapes and general
features of orders 2 and 4 densities are closabatof the exact bootstrap likelihood. The pietushow
that the densities of higher order kernels ¢&.@rder 6) have no advantage over those of ordensd24.
This is seen in the sense that the pictures odéimsities for greater or equal to order 6 arelava that of
the exact bootstrap likelihood. We observe thaséome points, their values are above 1. This m#kem
unreliable as true densities. The densities fdeo6 and beyond are clearly much farther from tfidhe
exact bootstrap likelihood. Moreover, as from orfiethe densities are only marginally better thaohe
other. In the foregoing, if it becomes relevanintake a choice of higher order kernel via the Homts
likelihood approach, then the choice should beroPder 4. In this study, they (i.e. orders 2 ahaxhibit
better pictures — i.e. shapes and features — “sfose that of the “true” densities (i.e. the exactotstrap
likelihood). Closest here means more comparable.

1.2 4
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Figure 3: Distribution of Optimal Window Width as a
Function of the Ordemf)
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Figure 2: CDFs of the Exact Likelihood and thoséhef
Higher Order Kernel Bootstrap Likelihoods

Figure 2 presents the graphs of the cumulativeigefusctions (cdfs) for the higher order bootstkagrnel
likelihoods and also that of the exact bootstriglihood. These cdfs were generated by using the
>P(X, <6)
following expression: F(8)==——, k=1(1)n, where X, = wapt(ei)
> P(X, <6)

The pictures of the cdfs compliment those of thesdees in Figure 1. Figure 3, shows the behavafur
h___ as a function of the order. Specifically, by gsthe results of our examplé, . is a linear function

'm,opt ™, opt
of the order ifn) having a slope of 0.0732. A more mathematicgiragch for measuring the closeness
between the higher order bootstrap kernel densitgtfons and the exact (empirical) likelihood istie

form of a discrepancy such as the Kolmogorov—Smir(i¢S) or the Wald—Wolfowitz (WW) distance,
dkS(F(e), F(0))= Seup| Fe(8)~Fm(8)|, where F,(8) s the cdf for the exact bootstrap likelihood and

F.(0) is the cdf for ordem bootstrap kernel likelihood. (See Boos, 198Tpables 1 and 2 give the p—

values and the most extreme absolute differenctafuie) of the nonparametric goodness of fit tebts
significance between the exact bootstrap likelihand the higher order bootstrap likelihoods. TIgtEst
gave a p-values of 0.000 for all tests of goodmddi between the exact bootstrap likelihood ahd t
higher order bootstrap likelihoods while the WW gav p—values of 0.003 for order 2, 0.171 for ortler
and 0.000 for orders 6 — 30. Thus, while the K& sbows that there is significance difference betwthe
exact bootstrap likelihood and all (higher) ordeotstrap likelihoods including orders 2 and 4, W@V
shows that there is no significant difference betwéhe exact bootstrap likelihood and order 4 homts
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likelihood but that there is significant differenbetween the exact bootstrap likelihood and or@e& 8,
10, 12, 14 and 30 bootstrap likelihoods.

Table 1:p-values of the nonparametric goodness of fit test@fificance between the exact bootstrap
likelihood and the higher order bootstrap likelilao

Order of the Bootstrap Likelihood

Type of Nonparametrig
Test

2 4 6 8 10 12 14 30

Kolmogorov—Smirnov 0.000 0.000 0.000 0.00(Q 0.000 000. 0.000 0.000
Wald-Wolfowitz 0.003 0.171| 0.000 0.000 0.000 0.000 0.000 0.000

Table 2: Kolmogorov—Smirnov most extreme absolifferénce between the exact bootstrap likelihood
and the higher order bootstrap likelihoods.

Order of the Bootstrap Likelihood

2 4 6 8 10 12 14 30

N

Most extreme absolut¢ 0.228 0.374 0.443 0.468 0.488 0.50(¢ 0.500 0.53
difference

Figure 4: A plot of Kolmogorov-Smirnov distance i@sponding to the order of the bootstrap likelihood

0.6
—> 0.5
0.4
03
0.2
0.1
0

0 20 40

Order of bootstrap
likelihood

KS Distance

—e— KS Distance

In table 2 we observe that the most extreme alsdalifterence (distance) given by the KS test
shows that as the order of the bootstrap likelihoodeases the distance also increases. This shaivthe
higher the order the larger the discrepancy betwibenexact bootstrap likelihood and the higher orde
bootstrap likelihood. However, it is observed theters 2 and 4 provide the least “Kolmogorov—Smirn
distance”.

Figure 4 gives the distribution of the values & KS distance against the order of the bootstkagtitiood.
Again, we observe that the jumps between the dessif the higher order likelihoods 6) are quite small

5.0 Discussion

In the application of kernel density estimator te tgeneration of bootstrap likelihood, the
smoothing parameter (i.e. the window width) usuathynes into focus. In the earlier works, Ogbonmwan
and Wynn (1988, 1992) and [11], the smoothing patamof order 2 was utilized in generating bootstra
likelihood. This work introduces and examines ¢filect of higher order kernels in the generatiorhef
bootstrap likelihood. According to [9] the effaatness of higher order kernels depends on the sasigd
of the distribution, and queried how large the siensjze should be. The works of [7] on the effesmtiess
of higher order kernels are also sample size depe#nd The works of [5], [6], [9], etc. could not
recommend the use of higher order kernels in praatue to over dependency on sample sizes. Oas ide
circumvent the problem of sample size dependencthén effectiveness of higher order kernels. Our
approach depends entirely on the bootstrap andeftrer can have the desired number of bootstrap
configurations for all orders of the kernels begansidered. Thus in our situation, all conditi@ighe
problem being solved are the same except for theesaof the higher order window widths. Hence any
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observed differences whatsoever in the densitiest tmave emanated from the values of the higherrorde
window widths, hy, o themselves. Our study benefits from the methagio#d aspects of the bootstrap,
which continues to grow as computing, power inaeaee [2]). The densities for the higher order
kernels in figure 1 reveal the trade-off involvedthe choice of the best order of the optimal wimdo
width. The smaller values of the window widths hgy,= 3.76 and Ry = 4.81 in our example, yielded
densities which are closed to that of the exactdiap likelihood.. On the other hand, the langgdues of

h (ie.z he‘opt) produced densities, which are again seen to matresrf off from the exact bootstrap

'm,opt
likelihood density. The densities for orders 2 afhdare approximately close comparatively and
competitively to the density of the exact bootstiielihood. Thus, orders 2 and 4 kernels areeqgidod
and uniform in the sense that their vertical distsn(comparing their densities with that of theuétr
density) are small and fairly constant. Generdlly,taking the exact bootstrap likelihood as theetr
density, the approximations of these densitieggawl forh, ., h, , but poor forh, . hy . ho N,

h14‘opt and hSO‘opt :
6.0 Conclusion

Practical applications of kernel density estimatame always dependent on the choice of the
smoothing parameter (see [15] ). In determining thoice of the window width many data driven
approaches have been proposed and studied datikgdoghe work of [18] on the Least Squares Cross—
Validation and going across to the work of [6].] through the literature, the optimal window widtr the
smoothing parameter) has mainly been of orderm2this work, we have produced higher order bogtstra
likelihoods. In the simulation example considerea; found that the densities (realized through the
application of the higher order optimal window widh equation (3.3)) for orders 2 and 4 were bdttan
those of orders 6, 8, 10, 12, 14 and 30 in compangith the exact bootstrap likelihood. With thisding
we argue that choice of the best optimal windowtlsgdare those of orders 2 and 4.
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