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Abstract
The expressions for the gravitational fields of spherical bodies are
well known. In this paper we derive the exact expressions for a homogenous
massive prolate spheroidal, an extension of the gravitational fields of
spherical body for investigations and applications.
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1.0 Introduction.

Some five and a half decades of years ago, theetieal study of gravitational fields was a matter
almost exclusively treated to fields of massive ibedf perfectly spherical geometry, simply becaoke
mathematical convenience. An example is seen énaipplications of Newton’s Dynamical Theory of
Universal Gravitation (NDTUG) in the treatment bEtmotion of particles (such as projectiles, sisl|
penduli and even gas molecules) and the eartleddetl under the general assumptions that the isasth
perfect sphere. Similarly, in the solar systemrtision of bodies (such as comets, planets, asi®iid
stars) is treated exclusively under the generalimpsion that the sun and these bodies are perfectly
spherical in shape. In the same light, Einsteirtigory of Gravitation called General Relativity Ding
(GRT), the motion of bodies (such as planets) aadiges (such as photon) is treated under the
assumption that the sun is exclusively a perfebesp (the Schwarz child’s space-time). But thé fiaat
of nature is that all rotating planets, stars aaldxges in the universe are either oblate spheroidarolate
spheroidal in shape.

Hence, we hereby prepare the way for the studynofion of all particles or bodies in the
gravitational fields of prolate spheroidal geometry deriving the expressions of the gravitational
potentials. It is known that satellites orbits ward the earth are governed by NDTUG and the second
harmonics (pole of order 3), as well as fourth hamios (pole of order 5) of gravitational scalareydtal
due to imperfect geometry. In 1952, Jeffreys [idgested the fourth harmonics, which yielded amgét
of only 86% of the value obtained by King-Hele avdérson [2] from the analysis of data on satellite
orbits. In 1959, O’Keefe, Eckels, and Squiresif8proved on Hele and merson result using equatorial
asymmetry for spherical shape. A year latter, V[a{i got a very good approximation of the second
harmonics which reduced the problem of Sterne ] &arfinkel [6] in quadratures by applying oblate
spheroidal coordinates to investigate the motioarokarth satellite. Yet there are still naturedwring
particles whose geometrical shapes are prolateaiplagé (such as rain drops) and their geometry ale
corresponding consequences and effects in the mofiall particles in their gravitational fields psinted
out in a paper [7].

2.0 Theoretical analysis
Consider a homogenous prolate spheroidal bodgsifmasd,. OZ points along the polar axis and OX
towards the vernal equinox, the prolate spherc:idardinates(n,i,cp) defined as shown in the figure by
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and
x=a[(1—r]2)(22—1)]% cos@ (2.1)
y:a[(l—/f)(g‘z—l)]E sing (2.2)
z=ang (2.3)
wherea is a constant an{j—ls nN<l 0<&<ow; 0 @< 211} (2.4)
Since the body is homogenous, the density of active npass,given by
P £<§,
r)= 25
p(r) {O .y (25)

wherep, is the constant density of rest mass and the gravitaticalalr potential of the bodg (r],E,(p) is

static and hence satisfies the field equation
0°®, (7.6,9)=41Gp(1.£.9) (2.6)
The interior and exterior scalar potentials areegitay

1 0 0 0 (o, 0 &2 -n? 9° )
—(1-n?)—+— -1)— @ (n.&,0)=41Gp, 2.7
azizz_nzi{an( n )an+az(z )az+(zz_1)(l_n2)a(pz} g(nz(p) p ( )

and

1 0 0 0 (., 0 &2 -n? 0° .

—~ [1-n?)—/—+=— -1)—+ ) ,6,0)=0 2.8
a_Z(EZ——nZ){an( o tae g (22—1)(1—n2)6<p2} (nte) 2
A solution of variable separable, complementargpehdent of the azimulthal angeis given by

®,(n.&)=an)T(E) 2.9)
Hence
0 0 1 0 0
—I\1-n?)—> (n.,& ——(1-n?)—Q
aﬂ( n)an (n.) _ Q(ﬂ)aﬂ( n)aﬂ (n) 010
+i(§2_1)iqy(n_§) +;i(§2_1)i-|-(§) .
JE FH T(&)oE ¢ o0&
Rearranging and introducing a separation constettiet lap lace equation, we have
o[, ,\0 ] _
ﬁ_(l n )ﬁﬂ(n)_ﬂﬂ(n)—O (2.11)
and
d[( 4\ 0 1 _
5_(5 1)0—5T(<‘)_ AT(€)=0 (2.12)

whereA =1 (I +1); | =0,1,2,A . The solution of equation (2.11) and (2.12)tef tegendre’s differential
equation are

p.(n)
Qn)= 2.13
(r]) {Ql(ﬂ) ( )
and
_[p(2)
T(2)= {Ql( ) (2.14)
Consequently,
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2 2(,,2 2 < | A- - - -
¢g(f7,<‘)={§ﬂpoa 0 +&*)+x[A pe)+B Qe R(r)+D, Ql(n)]} (2.15)
Where A’ ,B;, C;,D; constants and;R), are the Legendre’s functions of order 1. Simjldle exterior
homogeneous part has a solution given by
@,0.6)=5[ap )+ B0 ENlci (7)+01Q.0) (2.16)

Now since the interior and exterior regions bothtam the coordinateg =0 which is a singularity of €
we

choose D =D’=0forl=0,1.2... (2.17)
in the general solutions (2.15) and (2.16). Alses§ =0 is singularity of Q, we choose

B =0; forl=0,1,2,... (2.18)
Also since pis not defined¢ - o in the exterior region, we choose

A" =0; for I=0,1,2.... (2.19)

Next, the conditions of the continuity of the pdtels and their normal derivatives &t=¢, (boundary of
the spheroid), it follow that

B= ‘ZG p.a’¢, (2.20)
3 —
ale)]
and
p=-2rpa| et o TEREEL (221)
3| —
et
and B/ = A’ =0; and
4zﬁpoa2(dd p.(¢ )J
B= ‘ o (2.22)
d d
9 a4 -p(&)| L
tale) genle)]-pio) fold)] |
4zﬁpoa2(dd p.(¢ )J
A= d Eho (2.23)
d d
9 @ -p(&)| L
o) ente)]-rie) ot] |
A =B’ =0 for | =345A (2.24)

It follows that from (2.15) and (2.16) and (2.2@R-23), the potentials are given by
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+

1) , 26.Q,(6)P.(€)P.(n)

& +n? —(€§+—
3 d
|:df Qo[ { ]:| s

/0= 2[dal)] rlrl @29

&=,

3[Qz(g ){ddf Pz(f)}g_g -p(& ){ddf Q(¢ )}MO ]

0

+

and

& Q(&)R(¢)rR )

el
( ’6):4nGPOa2

2,085 ol alerin) (226
¢ =84

3[@(5){(;1;2(5)} (6]l )}]

=&,

=4

+
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The gravitational scalar potentials (2.25) and §2.@an be expressed in terms of the rest masefithe
prolate spheroidal body is given by

M, =2 a'RE, (6 +) (2.27)

3.0 Summary and Conclusion.

In this paper we formulated and solved Newton's/ersal gravitational potential field equations
for a homogeneous prolate spheroidal body, withettect and complete results given by equation$)2.2
and (2.26). These results are available for apticain physics. For example, raindrops are peolat
spheroidal or oblate spheroidial in geometry ares¢himperfect geometry may have its corresponding
consequences and effects. It is certain that ¥ssitigations and applications will yield plausibdsults.
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