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Abstract 

 
The purpose of this study is to investigate the compactness of cores 

of targets for nonlinear delay systems.  Our results are obtained by exploiting 
the non-singularity of the fundamental matrix for the homogeneous part of 
the system and its “conjugate” equation.  Hajek's arguments in [4] of the 
notion of asymptotic direction and other concepts of convex set theory stand 
monumental in the development of this study.  With a perturbation function, 
satisfying a smoothness condition – growth condition.  A relationship is 
established between the boundedness of cores of targets and the Euclidean 
controllability of the nonlinear system.  This relationship gives vent to the 
establishment of the compactness of cores of target for the system.  We 
complement Ukwu [9] and Chukwu [1] by answering in the affirmative that 
under certain smoothness conditions, the compactness of cores of targets for 
a linear system guarantees the compactness of cores of target for the linear 
perturbation. 

 
pp. 101 - 104 

 

1.0 Introduction 
A core of target' is the set of initial states of a system that can be steered to the target using 

appropriate control.  The subject of cores of targets has captured the attention of many authors in recent 
times as it is being understood as the seeds for our expected outcomes.  Markus [8] and Hajek [4] have 
investigated the compactness of cores of targets for ordinary systems without delays.  Chukwu [1] extended 
the results of Hajek and Markus to some non-linear systems.  Ukwu [10] exploited the results of these 
earlier authors to establish the compactness of cores of targets for linear delay systems. Iheagwam [6] 
established a relationship between cores of targets and Euclidean controllability of linear systems.  A 
computable criterion for the compactness of cores of targets for linear delay systems was also articulated by 
Ukwu in [9] and initiated effort at studying the cores of targets for perturbed linear delay systems.  he 
present endeavor is an attempt to extend the results obtained by Ukwu to non-linear delay systems with 
varying arguments in the perturbation function.  The system below is therefore presented for investigation. 

x& (t) = Ax (t) + Bx ( t - h)+ cu ( t) + f(t, x (t), x (t - h), u (t),u( t - h)) 
 (1.1) 

x (t) = φ (t), t ∈ [t0 - h, t0]  h > 0; u(t) = 
0t

u for t ∈ [t0 – h, t0] 

where A and B are n x n constant matrices, C is an n x m constant matrix and φ is 
continuous.  The control u is a measurable m-vector values u(t) constrained to lie in a 
compact, convex non-void subset, U of the Euclidean m-space, such a u is called 
admissible, x and f are n-vector functions.  The target set H is a closed, convex, non-void 
subset of En.  Let )(W 1

2 denote the Sobolev space )(W 1

2  ([t0 - h , t0] , E
n ) of continuous 

functions φ : [ t0 - h, t0 ] → En which are absolutely continuous and whose derivatives are 
square integrable on finite time intervals.  If x: [t0 - h, t1] → En, then for t ∈ [t0, t1] the 
symbol xt denotes the continuous function on [t0 - h, t0] defined by xt (s) = x (t + s), s ∈ 
[t0 - h , t0]. 
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2.0 Notations and preliminaries 
Definition 2.1 

The system (1.1) is said to be Euclidean controllable if for each φ ∈ 
n)( Ex,W ∈1

1

2 there exists a time t1 > t0 and an admissible control u such that the solution 

x(t, φ, u) of (1.1) satisfies ( ) φφ =u,xt0
 and x (t1 φ u) = x1. 

Definition 2.2 
The core of the target set H c En denoted by core (H) consists of all initial points 

φ (t0) ∈ En for which φ ∈ )(W 1

2  such that there is an admissible control u for which the 

solution x = x (φ, u) of (1.1) satisfies x(t) ∈ G for all t ≥  
 
 
t0.  If φ ∈ )(W 1

2  and u is an admissible control, then there exists a unique solution of system 

(1.1) for t > t0 satisfying x(t) = φ (t) for t ∈ [t0 - h , t0].  This solution is given by 

     x& (t, φ, u) = x (t, φ, o) + ( ) ( ) ( )[ ]∫ +−t

t
ds(s-h)u), u (s) ,s-h), x (sx (t,fscustX 

0  (2.1) 

where X(t) , the fundamental matrix of the homogeneous system given below 
    x&(t) = Ax (t) + Bx (t – h),  t > 0 a. e  (2.2) 
satisfies 

X (t) = 




<
=

0to

0tI
    (2.3) 

and where 
   X(t , φ, o) = X (t) φ (t0) + B ( )∫ −−

−
0t

h0t
ds s  )hst( X φ   (2.4) 

Remark  
As a consequence of (1.1) being autonomous      X (t, s) = X (t - s,0) = X (t - s)

 (2.5) 
For further definition of the solution matrix see ref [5] page 145.  By the transformation X 
(t , φ 0) = T (t) φ (t0)  (2.2) becomes 

X(t, φ, u) = T(t) φ(t0) + ( ) ( ) ( ) ( ) ( )( )[ ]∫ −−××+−t 

0t 
ds)hs(u ,su,hs,s,sfscustX  (2.6) 

where the family {T(t): t ≥ t0} is a semi–group of linear transformations with properties 
spelt out in ref [5] and [10] 
Lemma 2.1 [ref [10] see proof in Section 3.0] 

For any a ∈ En, X(t  – s)a  = T(t –  s)a  
 
3.0 Main results 
Proposition 3.1 

With the following conditions imposed on f: 
(i) f(t x (t), x(t –  h ), 0,0 ) = 0 
(ii)  The set [f(t x(t), x(t – h), u(t) u(t-h): u ∈U]  is convex for all t ≥ t0, x ∈ En 
(iii)  f is continuous and bounded locally in u, if  0 ∈ H and 0 ∈ U then 0 ∈ core (H) 

and hence core (H) is non-empty  with respect to system (1.1)  
Proof  

Since ( ) 00 =.,.,.,f , we can choose φ(t0) = 0 and u  = 0 in (2.7) to get x(t, φ, 0) = 0  

for all t > t0.  This implies that 0 is in the target H; and so 0 ∈ core (H) and core (H) is 
non-empty.  Sequel to the convexity of U and H and the conditions imposed on f in 
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proposition (3.1), the convexity of core (H) with respect to system (H) becomes 
immediate.  The closedness was proved using a weak compactness argument. 
Theorem 3.1: 

Under the standing assumption on the control system (1.1) core (H) is convex and 
closed.  
Proof (Convexity) 

Let φ1(t0), φ2(t0) ∈ Core (H).  Then there correspond two admissible controls u1 
and u2 and two solutions x(t,φ1 u1) and x(t,φ2 u2) of (1.1) such that x(t, φk, uk) ∈ H for  all t 
≥ t0, k  =  1, 2.  Let α, ≥ 0  β ≥ 0 ∋ α + β  = 1.  Then α x (t, φ1,u1) + β x (t1 φ2 u2) ∈ H for 
all t ≥ t0 since H is convex.  From (2.6) 

T(t) (αφ1 + βφ2) (t0) 
 + ( ) ( ) ( ) ( ) ( )( )[ ]∫ ∈−−×+−t 

0t 
Hds)hs(v ,sv ,hsx,s,sfscvstX , ∀ t ≥ t0   (3.1) 

and v  =  αu1 + βu2 is admissible.  Hence (αφ1 + βφ2)(t0) ∈ core (H).  This shows that 
core (H) is convex. 
(Closedness) 

The set G = {u: u∈ locL2 [L(t 0, ∞), U] is a closed, convex and bounded subset of 
locL2 ( [ t0 ∞) Em ). Since L2 is reflexive, we conclude that G is weakly compact.  Let {φk 

(t0)}, k = 1, 2, … be a sequence of points in core (H) such that ( )( )00kj
ttlim φφ =

∞→
.  Let uk, k 

= 1, 2, …, be the appropriate corresponding admissible controls such that X(t, φk, uk) ∈ H 
for all t ≥ t0.  Since G is weakly compact there is a subsequence {ukj}, k = 1, 2, … which 
converges weakly to an admissible control function u ∈ G on [t0, t1], t1 < ∞.  That is   

( ) ( ) ( )( )[ ] ds  u,hsx,sxfcu stXlim t 

0t jkjkj
∫ −+−

∞→
=  

( ) ( ) ( ) ( ) ( )( )[ ] ds  )hs(usu,hsx,sxfscu stXt 

0t ∫ −−+−   (3.2) 

 
Let ( ){ }∞

10jk tφ  be a subsequences of ( ){ }∞

10k tφ  corresponding to { }∞

1jku  then 

X ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ∈−−+−+= t 

0t jkjkjk0jkjkjk H ds  )hs( u ,)s( u,hsx,sx(fscustXttTu,t φφ (3.3) 

for all t ≥ t0 since H is closed. By continuity of the class of {T(t)} we have 
  ( ) ( ) ( ) ( ) ( ) ( )00jkj0jkj

t  tTtlimtTttTlim φφφ ==
∞→∞→

      (3.4) 

We obtain from (3.2 ), (3.3 ) and (3.4) that 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ] Hds )hs(u,su,hsx,s,sfscustXttTu,txlim t 

0t 0jkjkj
∈∫ −−+−+=

∞→
φφ  (3.5) 

for all t ≥ t0. Therefore φ (t0) ∈ core (H) and hence core (H) is closed 
Definition 3.3 

A point a ∈ En is an asymptotic direction of a convex set D ⊆ En if for some X ∈ 
D and all t ≥ 0 x + ta ∈ D. 
Proposition 3.2 

A non-void convex subset of En is bounded if and only if 0 is its only asymptotic 
direction 
Proposition 3.3 

If a non-void convex set D is of the form D = L + E where E is bounded and 
contains zero then L is a linear subspace of D and necessary coincides with the set of 
asymptotic directions of D. 
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Theorem 3.2 
Under the standing hypotheses on system (1.1) a ∈ En is an asymptotic direction 

of core (H) if and only if X (t -s)a is an asymptotic direction of H. 
Proof:  

From (2.7) it is deduced that  
   X (t-s, φ, u) = T (t-s) φ (t0) + ( ) ( ) ( ) ( ) ( )( ) ( )[ ]∫ −−+−−+st 

0t 
d hu,u,hx,x,sfcu stX τττττττ (3.6) 

for fixed t ≥ t0 + s.  Take any asymptotic direction a of core (H). Choose φ (t0) ∈ core (H) 
so that φ(t0) + a ∈ core (H) for each θ > a Choose an appropriate corresponding 
admissible control u:[t0 ∞) → U such that 

X (t, φ,uθ) = T (t-s) [φ (t0) + θa]  
+ ( ) ( ) ( ) ( ) ( )( ) ( )[ ] Hd hu,u,hx,x,fcu stXst 

0t 
∈∫ −−+−−+ ττττττττ      (3.7) 

for t ≥ t0 + s.  For θ = 0 the proof is trivial. For θ ≠ 0, we divide through by θ and take 
limit as θ → ∞ to deduce that 

    ( ) θθ θ
b

1
lima stX

∞→
=−     (3.8) 

for some bθ ∈H.  To show that X(t - s) a is an asymptotic direction of H, take any c ∈ H, 
λ ≥ 0.  We must show that c + λ x (t – s) a ∈ H given that (3.8) holds. Keeping λ fixed, if 
≥ λ then 0 < λ/θ ≤ 1 Thus 

    Hbc1 ∈+






 − θθ
λ

θ
λ     (3.9) 

by the convexity of H. Take limit of (3.9) as θ →∞. Since H is closed it follows from 
(3.8) and (3.9) that 

c + λ X (t – s) a ∈ H    (3.10) 
Therefore X(t – s)a is an asymptotic direction of H.  Conversely let X(t – s)a be any 
asymptotic direction of H for t ≥ t0 + s. Then  H + θ X ( t – s) a ⊂ H   
 (3.11) 
for all θ ≥ 0. Take any φ (t0) ∈ core (H) and an admissible control uθ such that  
X(t – s) [φ (t0) + θ a] + ( ) ( ) ( ) ( ) ( )( )[ ]∫ −−+−−−st 

t 
)h(uuhXx,fcustX

0 0 τττττττ θθ  

( ) st t  for  astXH 0 +≥−+∈ θ   (3.12) 

We therefore conclude that φ (t0) + θa ∈ Core H since the same control holds the point φ 
(t0) + θa with H, showing that a is an asymptotic direction of core (H).  This completes 
the proof. 

Ukwu [9] in conjunction with Iheagwam [6] have earlier provided a fairly long 
proof of the Euclidean controllability of the system 
 x& (t) = AT x (t) + BT x (t - h) + MT u (t) + f (t, x (t), x (t – h), u (t), u (t - h)) (3.13) 
This result will here be used to conclude the boundedness of core (H) with respect to system (1.1) 
Theorem 3.3 

Consider system (1.1) with its basic assumptions.  Let the target H be of the form 
H = L + E where L = {x ∈ En: Mx = 0} is a linear space and E, a compact, convex set of 
system (1) with 0 ∈ E; M is an m x n  
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constant matrix.  Let the continuous function f = f( t, x (t), X (t – h), u(t) u( t - h)) satisfy 
the condition. 

   
( ) ( ) ( )( )[ ]

0
u

)ht(u,tu,htx,tx,tf
lim
u

=
−−

∞→
  (3.14) 

uniformly in (t, x (t), x (t – h) u(t), u(t-h)) ∈ E x En x En x Em x Em.  Assume that 0 ∈ U and 
0 ∈H then Core (H) is compact if and only if the systemx& (t) = At x (t) + BT x (t – h) + 
MT u (t) + f (t, x (t), x (t - h), u(t) u(t - h)) is Euclidean controllable. 
Proof 

Let {φn (t0): n = 1, 2, 3…} denote the set of asymptotic directions of Core (H). 
Then by theorem 2, {X (t - s) φn (t0): n = 1, 2, 3…} is the set of asymptotic directions of 
H we invoke proposition (3) to deduce that 

L = {X ( t - s) φn (t0): n = 1, 2, 3}    (3.15) 
for all t > t0 + s.  It follows from the hypotheses of theorem 3.3 that  

MX (t - s) φn (t0) = 0     (3.16) 
for each n and t ≥ t0 + s.  Taking the transpose of both sides of (3.16) yields 

( ) ( ) 00 =− TTT

n MstXtφ  for each n and t ≥ t0 + s.  By Lemma 2.1 and Theorem 3.1.  Core (H) 
is a non-void, convex and closed subset of En.  By Proposition 3.2, Core (H) is bounded if 
and only if 0 is its only asymptotic direction.  By the Euclidean controllability of system 
(3.12) its linear part is also Euclidean controllable and this is equivalent to requiring that 

( ) ( ) 00 =− TTT

n MstXtφ  implies φn (t0) = 0 for all t ≥ t0 + s and for all n.  This shows that 0 is 
the only asymptotic direction of Core (H).  Hence Core H is bounded.  This result and 
Theorem 3.1 yield the compactness of the system, since boundedness and closeness 
implies compactness of subset of finite dimensional spaces.  Conversely let Core (H) be 
compact then 0 is its only asymptotic direction.  This means that ( ) ( ) 00 =− TTT

n MstXtφ  

implies φn (t0) = 0 for all n and t ≥ t0 + s.  We then conclude that 

    ( ) ( ) ( ) ( )tuMhtxBtAtx TTT
.

+−+=
⋅

&  
Is Euclidean controllable on [t0 t1] t1 > t0 (Ref [2] ) and hence system (3.16) is Euclidean 
controllable.  (Ref [3] ). 

4.0 Conclusion 
A core of target for a system is the set of all initial points that can be steered to the target using 

appropriate control energy. With the growing significance of the subject; as it is becoming known as the set 
of seeds for our expected outcomes, the need to characterize cores of targets is now of great interest.  The 
present study investigated the convexity, boundedness and closedness of cores of Targets for nonlinear 
systems, which have been established in the affirmative.  Beyond these results is the realization of the 
relationship between compactness of cores of Targets for a system and the Euclidean controllability of a 
related system.  The notion of asymptotic direction, weak compactness argument and the imposition of a 
growth condition on the perturbation function to make it smooth remarkably reinforced each other in 
providing the method of approval for this investigation.  This research is an extension of the results in [10] 
and [5] and a complementation of the efforts in [9].  The success of this study is a happy augury as it not 
only characterizes cores of targets for non-linear systems but also provides governments and entrepreneurs 
with broad policy guidelines for the commencement and execution of projects to ensure their completion. 
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