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Abstract

In the numerical inclusion and isolation of the zeos of a
polynomial in an interval on the plane, hybrid combnation methods have
been found quite useful for their virtue of easy costruction and reduced
computational cost with respect to interval arithmeic operations, while
still providing restrictive inclusion for the respective zeros simultaneously.
In what now follows, consider a collection of comipiation methods arising
from efficient enhancement of a class of basic sittaneous numerical
inclusion methods under two different updating pro@dures of the
generated iterates. The accuracy of the methods Wibe illustrated by
insightful numerical experiments.

Keywords: combination methods, zeros of a polynomial, coroecR-order of convergence, interval
methods, efficiency index
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1.0 Introduction
1.1  The hybrid combination of iteration methods for zero inclusion
Consider the numerical inclusion of the ze{ng}%lwith respective

multiplicities{y, }', of the polynomial
P(z)= iajzj = ﬁ (z—/lj)“"; z,a 00, i,uj =na =1n>2 (1.2)

of degreen, by combination of point and interval inclusion arithmetic. Indeed, an
approach of reduced computational cost is obtained by this hybrid ratioli of a point
arithmetic method with an interval inclusion method applied once and orheifinal
stage of the iteration, see [14]. The hybridisation is such that the interval methatkprovi
the needed inclusion for the zeros. This is an efficient methodaklies cost with respect
to disk arithmetic operations on real time implementation. Inrdgard, is the class of
combination methods

e o 4., (z) s=oWm-1 ) o)
b4 (29)-B (se¥(2), 5 (2),.,. L (2)) 1=12 '
|, [29)-B (sc?(2), ¢ (2),... 5C©
Z(m,l) - Z(‘m) _ Akfl‘i (ng)) k=12
i j layens

4 [Z")-B,(8°(2).57(2)...89(Z))’

3l 2, il

i =(1)N, for a fixedl andk, in whichl <k, | =k or | >k, where
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1 1)
$5,?)(Z)=7§Ni(wJ v=11)l (1.3)
S(O) —_ 1 N 1 v. —
Vi (Z)_zi;#i W ,V—1(1)k (14)

and

K O ECARN
4’1(255))=é(_1)k_vﬂij(ﬂii+l} [ﬂijw 1]Zﬂ : (/lpip((zzlts'))i] JJ=AN

The summation without index runs through all nonnegative intdgérs, for which

Iﬁq, =v; (v=121)k) and |§|q| =k; (k=123...)
are satisfied simultaneously. A few of thege(z*), are

/

J\_ 1P S 1 (1 PY 1 P/
A2 n a ) (2B L
Hi R, 2u\u, \P ) 2u P,
1R _1(1 BB, 1(1 1 P Y
A3,j (ZES)):_L__ —+1 =1 =—+2 ( n \J
6u; B 24\ K, P, P 6,uj H H, P,
i / " i \? IN\? pu
Aa-(Z(S)):_L Pn + 1 i-i-l Pn Pn +1 Pn _i i+1 i+2 Pn Pn
o 24'ul Pﬂ 'ui 'ul' 6|Dn IDn 4 2|Dn 4luj luj ,Uj P P
st —+1 i+2 i+3
24/11 'ul ,Ui /uj

For simple zeros4, (z*)is easily computed from
v+ (v) (s)

)& (_) ' Pn (zj )

Ak,j (Zj )_qu Vi Pn ( zgs)j

TheB,; v=11)kare the Bell's polynomials in the poin{s.z,.z,...z}given by the
recursion

4., [#")i=1wn (1.5)

Lk=0
z;k=1

Sz +z)k=2

B.(2.2,.2,-2)= %(3zlzz+zf+223);k:3 (1.6)
1. 1 1, 1, 1 ...
224““—2321 +—Zz+—2221 +—21-k—4
—zlz+ zzl+ zz1 z+ 1 zf+lzz +Ezs;k:5
4 4 2 0 6 273 5
1
EVZZIZ,BH(Zl,22,23,...,Zk);k=6,7,8,...
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It should be noticed that the point method in the combination (1.2) is appleadmber
of times, while the inclusion method once only and in the final stagieechlgorithmic
process. The order of the point and interval arithmetic methotl.2) ik, =1 +2and

K, =k+2respectively. The circular interval given as{w:|jw-Zsr}={zr};z00,r >0 is a

disk or circular region of centre z and radius r. The paranmrefriesentatiory ={z;r}

is usually adopted with the definitions that= RadZ) and z = Mid(2), see [3]. It
degenerates to the centre pointjf however, r =0, but this is without hindrance to our
analysis, more interestingly interval arithmetic is consistgmt compatible with point
arithmetic. There is improvement of the convergence of (1.2jeifcorrectioc®, is
judiciously introduced, so that instead,
$()(z)=i2y(ﬁ} v=11)wsl (1.7)

where for example the correction could be taken as

"4,(27)
amongst other useful alternative choices of a corrector, thisectsogfficient since) is
readily available. Note

(p=w+1), for a choserw<| (1.8)

that zi"» = z>’ -C!> for a correctorc”is a method of its own right and therefore say that

il
it is a corrector of order p. The instancesiLk=1 and | =1,k =2where the correction
isc{’, form the cases considered in [14]. A further practicable exaofdlee above is

when | =k =2 with the correction taken as{’orc!?. The inclusion intervalizf‘”}iw

are the non-overlapping initial disks isolating the respective zeltos. noted that the
root iterations, [3], are inefficient for combination purposes becaludee difficulties in
the computation of radicals and the delusion therefrom on the appedpfiatoot to
choose. In general, for a basic circular interval process withr erd@nteger), under a
correction of ordem, it is deduced, see the appendix herein and with respect to the
notations therein, that the errer=z -4, in the interval process of the improved Wang
and Zheng's method,

4.y (ZES))
4.,(z2)-B,(92(2),98(2),..9(2))

J Lj 2, K.j

k=123A (1.9)

Z(s+1) - Z(.S) _
J J

with 99(2)=2 5 u(Inv(z? -z + o)) v =1k (1.10)

for a fixedk, propagates its effect in the way that ofre*);
ol e g wn
' [0(r2)+0(£" <2 )lo(e™ )8 =0
where C'® is the correction term which enhances convergence, is taentfre point
method z9 =z -Cct® of order p and
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z, =Mid(Z, );r, =Rad(Z, );&, =z, -A,;e=M £i|;r—Max{ } also z,,2,r, 11,2,z denote

i=Y(1)n =1(1)n

)
Z& 7 & e 2 20 and r—Max{ J} p= Mln{ 2~z

i=1(1)n IJ 1(1)n

0 . .
-, } : The inversion

INV(Z)from [16] is given by any one of the choices in

z 0%, B=1
|z| =r® | z| -r?

INv(Z)={ {3 — L 0n, p=o (1.12)
2 |z[(|z] -r )
R } .07, B=0
z'|z|*-r?

The numberz is the conjugate of the complex pomtandz™ 0z" 0z'>. The inclusion
relation

3 Rad(iNv(z -2,)) )< z Red(inv((z -2, ) oz, ={z,:r} (1.13)

instructivély implies that the methods need be implementediaprésented. Similarly,
the equivalent point method
: 4.,(2")
(1) — S(s) _ = .
2 ) (& (). ()& () (1149
of (1.9) with

N 1 !
i (z2)=— m Z#(Wj v=11k (1.15)

for a fixedk, propagates its error effects according as
gjj :o(gKP*"’l);pzz,s,...,Kp—J,-Kp =k+2 (1.16)

so that its order iX, + p-1. In (1.9), we may as well choose thgft’ =C’; wsk. The

convergence requirement of the independent methods in (1.2) espedcihlisespect to
initial point/disk separation is similarly obtained as in [**9] f6f1,2. Thus for a point
method of ordek, (integer), here the radius is set to zero from (1.11), the esror i

deduced to propagate as
glmy = o((e““) ) ); gM=_em = 0((5(0) )KP;) (2.17)

where, £ =|v|ax{ }and the pre-subscrigt is by this notation, to indicate that the

L&

sequences ™} are generated by the point arithmetic process, and witirection
of order by introduced in this point process, then

g™y :0((£(m))Kp+m_l)£(m):pS(”‘) = 0((5(0))(K"+”_1)m);2s p<K, -1 (1.18)

from (1.16). For inclusion method of order, without correction,
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0= ol olr ) e = of (£9)" (1.19)
Set r™ = Mjax{rf“““} and ™V = Mlax{| g

absolute errors in the centres of the digk®’; j =1(1)n respectively, generated by the
combination method (1.2) to approximate and include the respective ZHnestate of

convergence of (1.2) is seen from (1.19), which r™ =
o((s“” ) _”K?jo(r“”) = o(( pO )t _“K?ﬂj,‘s‘m’“ = o((s“” )P j;,B =01(1.20)

obtained by setting==_¢™ from (1.17) into (1.19), for any combination method of
which K, is the order of convergence of the basic point processkarid the order of
convergence of the basic interval method. It is instructiverl]tﬂ%rneed be accurate to the
order at leagib*and also,s!”is of the same order, then to calculate’ to the order

}Where rimand ™, are the radii and the

107";t >> 1 of accuracy at least the number of point iteratio

G

M, =1+Int|log oK (1.21)
are needed and to achieve samefor,
( t ]
I<I
M, >1+Int|log——~ (1.22)

log K

P

iterations need be carried out by the combinati@mtgss with the meaning thatt(A) =
integer part of A. To have bothr™ ands™to the minimum o(10*)of accuracy, a

minimum ofv = I\j/192><{Mj} number of iterations are required by the hybridlugion

method (1.2), in most instances, and M,may not differ significantly in magnitude.
The numbewm therefore, may conveniently be estimatedMy. Generally, as implied

in (1.21,1.22) the order of accuracy increasesdgtewith an increasing number of the
iterations. We wish now consider some efficient svap improve accuracy in a
combination method of the type in (1.2) by applmatof corrections and updating of the
iterates. To this end, lets start from considexirigen there is no correction in the point
algorithm, as it is in (1.2), further improvementresults can be attained for (1.2) when
we introduce an efficient correctaz;” of order p,in the root inclusion part of the

algorithm, in that stead leg°’(z)in (1.4) become

S9(2) =ﬂiiﬂi (INv (™ -z +c ) v =11k u <k (1.23)

i

For an inclusion method with correction of order
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re? = o ((e(s) )K"l) 0 (r(”),s(s*“ = o(( gy ‘1)0(( rt )2);ﬁ=1, p,22 (1.24)
and withg =0;

o ()" ) p, =2(1)K, -1
r.(s+1) = O(( f(s) )Kl_l)o(r(s)),5(5+l) -

(1.25)
0((£<s> )“"ﬂo((r(” ) )p, 2K,

Then the rate of convergence gt 1is seen from
r(my = o((ew) )(K"”K?jo(r(‘“),e(m*“ = o((ew) )KF(K"“jo((r“” 2 )p, =2 (1.26)

by setting £”=_¢™ from (1.17) into (1.24). Now the least number tefations to the
desired accuracy far™is as in (1.14) and that af™ is

<3 o

logK

M, =1+Int| log

P

which is derived from the second expression of§Ll.B@ g=0, then
O(( £ )Kg'('ﬂ *Pz-h); p, = 2( 1)K| -1

o (e Jo((r™ kb, 2K,

wheree@=_¢™ from (1.17) is inserted into (1.25), estimatehiis tcase that

p(ma) — o((é‘“’) )(K"l)'(?jo((r(”) ),g(mu - (1.28)

t
(KI P, _]J
M,, 21+Int |OQW P, =2(1)K, -1
t-2
IOQ(ZK —3)
M,, =1+Int T p, 2K, (1.29)

for ™ and that ofr™ is given by (1.25) and if the point process is ecred as well,
then

p(mo = 0((€(o> )(K| “1X Kprpr-1)™ j O((rw) ) )’

0((£<0) )( Kp+tp-)M(K, +p2—1))_ p, = 2(1)K| -1
'p, = 2K, -1
£ = P =2 o (1.30)
of (g1 ) KermTE ’3))0 (ryz) 2
( ( ) p, = 2A1)K,, -1

by setting: =_¢™ from (1.17) into (1.21). Here, we can estimate that
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t
(K ¥ —1} = A1)K, -1
M,, 21+ Int| log~— P P =2ADK,

o log(Y,) [P, =2(1)K, -1
(2o
2K, -3 =2(1)K, -1
M,, =21+Int|log~——~ P (DK, (1.32)
' log(Y: ) p, 2K,
for £ and forr™,
)
M, =1+ Int|log K -1 Y, =K, +p, -1 (1.32)
log (Y;)

It can therefore be seen that the method introdilced..23) with correction and the
centred inversiofB=0), will give improved order of convergence of therdtes than

(1.2) especially with respect to the centres ofdis&s, whenp,,p, 22, K, 23, K, 23 with

the point iteration at least=3 number of steps; and if without correction in thierval
method, therk, =2, p, =1, 5=0].

2.0 The application of updating procedures to the generated iterates

In the combination method the desire is to applgriral arithmetic only once, to
save considerable cost of disk arithmetic, for iowed inclusion of the zeros, the Gauss-
Seidel type updating procedure is appropriate énittislusion part of the combination, by
this

Akflvi(zﬁ"‘)) b —
4. ,(z2")-8,(s2(z),5(2),..., s;%;(Z))’k_l'Z"A (2.1)

Z(mvl) - Z(m) -
j i (
2,

with Séi)(Z)=%[§1ﬂi (N -z)) + 5 u(inv(zm -z +C:§°)))V}"=3(1)k replaces the

inclusion part of (1.2) with respect to (1.23). Téreor in the above propagates according

(m1)

to see the appendix, as =o( (¢®)"" )(§O(fi‘m‘“)+ﬁ O(Yi“”)j

vj:IO(ssmv“)fﬁ o((£2)7 )p, =23,..K, ~18=0
g(jm;) ol (5}‘”)"' _1) vjz—lo(gi(mvl))_'_‘ﬁ o (gi(o))pz )+§0( (ri(m,l) )2 )+:§ o( (ri(O))2 ); (2.2)
B=1p,=2

Considering (2.2) where of course is the order of the correcta;” in the inclusion
method and if there is no need for correction ket to be p, =1, and with g=1the
middle terms in the above brackets of the secomdession are to be ignored since its
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order of magnitude is smaller compared to the divens; we know < e<r, <r <1 when
convergence sets in, in the long runrentherefrom,

1 zo(e) Solrm)+ S o(re));
( ‘j—lo(gi(m‘l))-l-‘io( (gi(o))pz )), p, = 23,..., K| —:L-IB:O
g, =o((e@) 1y -

2.3)
(_JZ::O(Si(m,l))fﬁ: o( (ri(O))z )), p,22,4=1

refer to the appendix. Therefore, if no correciiothe point process as itis in (1.2),
(m1) m i1 N
o () Solm)s So(r)

T m,1 N p. . — _1- -
g(jm) o (gg()))KE”(K,—l)) ;0(&( ))+i=ZJ:'+10( (gi(o)) “)p,=23,...K, -13=0
| So(em™)+ So((r@) yp, 22.6=1
i=1 i=j+1

as inferred by inserting (1.17) into (2.3), andasa corrected point process as well, then

(m1)

(Kp+p-D)M(K, 1) | (&2 N
o =o((e) ey (Lol i)« S o(n)

(2.4)

L[ Eedie))a=o
o o) (Sof e e T

- So((no)))p=1
using (1.18). However, the least number of itersito calculate ™ to the accuracy of
order10*;t>>1 can be estimated similarly from

(2.5)

(m1)

+py—1)M _ j-1 m. N +p1—1)M _
r, =o( (g ermre 1))(i=1°(ri( 1>)+i§ﬂo(ri(°))) Oo( (@) ™™ 2 )0(r®) (2.6 )
Now sincer™ <r(® and noting that” =o(r*) then,

Fm) = o (g(O))(Kp+P1*1)m(K| -1) )o(r(o))z 0((5(0))(Kp+p1—1)"‘('<, 4)“) (27)

to have that for the method (1.2) witt(* (z)as defined in (1.23),

M, >1+ Int(log [Kt;_lJl log(K, + p, —1)]; 2sp <K, -1 (2.8)
This expression could also be obtained from wrif@) as
r(m, ) ~ o (g(o))(Kp+P1—1)m(K| -1) )(o(r(m,l))+o(r(0))) (2.9)

and again fo&™ | by using
g(m,l) o (8(0))(Kp+p1-1>"‘<»<. = )(o(s(m“)*' o( (gw))Pz ));,5 =0
g(m.l) —of (8(0))(Kp+p171)m(|<| -1) )(O(E(m”)*'o( (r(o>)2 )), B=1
from (2.5), then
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- 2<p, K -1,5=0
M,, >1+Int|log t= P Iog (K, +p, -1)|; h.<K,~Lp (2.10)
* K 2<p, <K, -1

M2v221+lnt(log(é;2J/Iog (Kp+pl—1)} 2<sp <K, -1p,223=1 (2.11)

respectively. Now, if Gauss-Jacobi updating is liggpseveral times(d=0(1)q-1
q=23A )to the point method under correction, we have

(52871

(s)
RS NG e

J

J
+2
q

- <s+§> (s+2) (S*g)
4,(29)-8| ¢ (2),5, ¢ (2),.5C,,  (2)

for a chosen k, where

\

(s+2) 1
g:v,j ¢ (Z)z_Zlui

R v=1( 1), w<l (2.13)

o
s _ %
z¥ -z * +C

Then using (19) in the appendix the error in (2 d@pagates as

(s+22) 69 \™ - _
e T

(s+é)
q

Wi

see [9, equation (6.6)]. But by the Gauss-Seiget tipdating, which now

( s+ﬂ'

(s)
P o) 219

] J+1 J+1
S+

- (s%l) (s+20) (+2)
4,1(21 )_B| 3_‘,“ (Z)'g:z,j (Z) ----- 3_\,"] (Z)

where
(s+%) 1 |iz 1 N 1 .
&:v,i (Z):_ LM +.Z H, 5 5 ’V:]'(l)l (216)
Iuj i=1 (s) (S+T) i=j+1 (s) (S+E) (S+E)
2> -z z” -z +C_ .

I wil

for a chosenl and efficientc'?,
error is such that

o+l

(s+2) i st N &9\ = -
£ =o<(pfi”)“”‘n)[zc’(pff JZ ‘{[pff J D;pl et @)

then again using (21) in the appendix, the propaig®f

i s=1(1)m-1

heres =0(1)q-1q=123,... In this case the error propagation with once apgbn of

Gauss-Seidel type updating in the inclusion pathefcombination method, is somewhat
complicated, but this is obtained by setting!™ derived from (2.14) or (2.17)

accordingly ta!®in (2.3). Like before, the least number of iteratido calculate ™ to
the accuracy(10™) in this circumstance, can then similarly be estaddrom

(m1)

r=o( (e ) Holim)r £of)|=o((Le) rol)  (2.18)

and fore™ is to use
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(§O(£;m;>)+ > o( (&) ))ipz =23,...K, -LB=0

i=1 i=j+1

e =o((,&m) ™" N (2.19)
(io(fi(m‘l))+_2 o((r®) )) p,22,5=1
where ™ is derived from (2.14) or (2.17) accordingly. larpcular
el
™ =o| (&) 2<p, <K, -1m=12,.. (2.20)

is the case from (2.14). Thus
M, >1+ Int[log(K ]/Iog [(1 F;l ](Kp -1)+ pfn; 2<p <K, -1 (2.22)

1

for r™ using (2.18) or (2.19) and fer™

pz 1 p1 _pl<K _15:0
M2121+Int[log( | J/Iog([ plj(K 1)+p1B 25 p, <K -1 (2.22)

M,, =1+ Int{log(é ZJI log ((1_ El j(K -1)+ pf}]; Z;szszl_l (2.23)

1

from (2.19) using (2.20). The error behaviour in1@ is complicated, but can be
approximated by (2.14) in the sense of writing 72.4s

(=5 Kp-i (42 =\ ] P, =2(DK, -1
_ (s \(Kp-D) P q .M p
& 0((pg ) ){o(pg J+o[(p£ j D s=1(1)m-1 (2.24)

It could be expressed that

from which,

1 (o)
(s+1) — (s) |PL* o=
i - O\, € !

(s+%)_ 1 s 2\
o€ _Wo((pgw) )0[(; J ] (2.25)

beof( o) )rm f}l}m)}
ool p B o

!
Kp-1
m(p);

2<sp <K, -1s=0(1)m-1 (2.26)
by assuming thatk 6 is reasonably large enough to ensure dba;.s“))“‘l)is
insignificant in magnitude when convergence set#ithe long run on s. Then (2.14) in
some sense approximates (2.17) in error terms laaccanclusions (2.21, 2.22, 2.23)

therefrom reasonably apply in this case as welle Bpplication of these updating
procedures gives lesser number of iterations todésired accuracy than the other
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approaches considered above as would be noticed (®21), (2.22) and (2.23). Based

on the experience of [9], we have thus to remaak th
* When updating is needless in the point metho@.ig) then the order of the correction can be such
that 2< p, < K -1 But when Gauss-Jacobi updatifg > 2)is to be applied on the point method then

the order of the correction need not excqed= , higher order correction may present only margoral

not any advantage in convergence, see [9, equ@i®a)]. Similarly, if Gauss-Seidel type updatisgo
be employed, then the order of correction haslehebility of lying in the range2< p, <K - 1

* Applying the Gauss-Seidel type updating=1)in the inclusion part of the
method of the hybrid combination (1.2; 1.23), wiitle choice of inversion ag=1, then

the order of correction in the inclusion methoddeet exceedp, = 2, because in this
case there is only a marginal convergence advantafeher order correction, in the
otherwise of 3=0 then we can haves< p, <K, -1. It is quite possible to pickc;” to

have p, 2K, or in fact2s< p, < Max{p, +K, -1K, fwithout hindering the efficiency of the
process, such possibility is considered in what nail follow and examples of such

methods are given in the sequel.
Interestingly, we could take the correcticffy in the interval part of the
algorithm to be
: 4.,,(2")
(0) — AN
<G 4 ,(27)-B (£ (2), ¢ (2),...5C(2)) (2.21)

since it is known to be available in the beginnafighe point iteration and still retain the
efficiency of the hybridisation. Whesc¥(z) is as in (1.3), the order of the point

arithmetic method in (1.2) i&, =1 +2,and if it is as in (1.7) then we may speak of order
as the R-order of convergence of which lower basrfdund to be
p, +I+1 p,=23A 1 +1
A Z{I +14,J(1 +1) +1; p, 21 +2
The interval arithmetic method in (1.2) with”(z) defined in (1.16) has the lower
bound

(2.28)

k+2+\/(k+22)2+4(k+1);p222,,8:1
O, 2yp, +k+1 p,=234N k+1B=0 (2.29)

k+1+,/(k+1)*+1; p,=2k+2,8=0

of R-order, obtained from (16) in the appendix, by aagalisation of the analysis in [9],
[16] on the corrected Wang and Zheng method. Itream be seen in (2.29) witg =0

the marginal advantage in convergence of hawfig in place ofCc,”. In particular,
suppose (1.2) has its components as defined indhd(1.23) let

| =k then p, =K, , this incidentally, gives maximum lower bound Rier of convergence
for the inclusion method whep =0 in the hybrid combination. This method will be

illustrated by some particular examples. Finatlye idea of the application of the
updating approach highlighted earlier under a otioe process gives by far further
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improvement of results in all. The case in whibk brder of correction in the point
arithmetic part is such that, = K often turn out to be inefficient and may therefoo

be recommended, though like before, it leads toimam lower bound R-order of
convergence for the point iteration in the comboratlgorithm, see [9] and in general
when there is no intention of applying correctidnath in a constituent method of the

combination, setc® =0 or C!” =0and correspondinglyp, =1 or p, =1 in all of the
above analysis accordingly.

3.0 Examples of the hybrid combination methods and their efficiency itex
The first, is the simplest member of the collecsion (1.2, 1.7, 1.23)

Z‘(Sﬂ) _ Z‘(S) _ H i =1(Dn;s=0(1)m-1
1y A
CM(l’l) Ni(s) :;1 Z|(S) —ZES) +C1(j) (31)
(m1) — 5(m) _ 'u'
O 1 N INV( (m) _ 7(0) 4 C‘(O))
N _jz=1'ui . AR i L
i j#i

in the class of the hybrid combination of methatl®), with c;\” chosen from any of the
correctors in

P (2\)
Ci?) =:UjN§0);N1FO) = Pn/(zéo))
=l " (3.2)
1L T 1 N y7
N 2 29— 20 4L

However, a method of improved computational comipfan the above is
750 =29 - yN®:i =1(1)n;s=0(1)m-1

Z‘(m.l) — z(rn) _ H (33)
i — " |NV(Z("‘) _Z(0)+ C(O))
N‘(m) E'ul i Lj
i j#i
and another is the combination method
CM(2,k) : 2 =29 - 1 i m i =1(1)n;s=0(1)m-1
N .
N _1221 29 _z(sl) +C®
i jri j 1,j
Z(my) = S(m _ 1 (34)
1 N™|w st > 1 oimo
e Sl 2t |

with the abbreviation thab1”(z)=z"™ -z +C*;i =(1)ns=141)m-1. Furthermore, is
the hybrid
CM(@3,K):  zm =29 - 1 (3.5)

2 2
1 NG| ~ 1 1|~ U
i D 00 7 el I (D e
H® 2 L;} '[Pif,-,i(Z)J 2 (};}Rfj;(Z)”
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1

1 N %u,.(le(Df.ﬁ."E“”(Z)))z’f1[

H™ 2

i };l i

Sy, .INV(Df,‘Jf‘;'O’(Z))] }

with C;” any of the varieties

(0) — (0)
Cl,l _/'II 'NI or

SC;EO) ={C® =H or (3.6)
20;20) = ! 3 k=12
1 N 1 ) 1(s ou
o 2 |29 R0 T ERN()
i j#i ik i j#i i,j.k
with  H® = ! T PO(Z)=Z22 -2 +C% k=12 (3.7)
L PI(ZY) 1) P(z) "M Y
2&(;@)[“;4 T 2R(2)

It will be noticed that the cases of the methods ichc,”=C”;k=12,..are as
efficient as the others. In any case, it is not dadory to havek, <K, that isi<kand

more so, the order of correction in the point mdthwy be chosen not to differ from that
in the interval algorithm as in some methods ofgheve. Finally, an example of method
for whichk | > K, arise when >k in the hybrid,

1

1wl (1 Vol s )
HO 2 {é“"(%ﬁﬁz)} +u(§%fl<2>”

Zi(m‘l) - Zi(m) _ - Iui (3.8)
m 0 *(0
-S4, INV(zZ™ -z©0+,C.)

J#i

CM@Ak):  2=2"- k=12

(m)
i

Furthermore, this and the class of methods whiglkx K, are the methods favoured by

theory, because their error propagation decay farenrapidly compared to when
K,<K, see for example (1.20), (1.26) or (1.28). Thedating procedures

(2.1,2.12,2.15) can easily be applied accordinglyhese highlighted methods. Several
other similar hybridisations of methods by this @asily be constructed. Obviously in
(2.2), for higher order k the methods becomes umclably robust, unwieldy,
complicated and with the implementation quite dediagpn  However, for the
performance evaluation of an iteration method, ilsecomputational complexity and
efficiency index. In a point arithmetic process timnplexitys, (n)takes into account the
normalised total number of basic arithmetic operaiper iteration, where the efficiency
is given by

E,(n)=(K,)Jum (3.9)

Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004.
Numerical inclusion of the zeros of a polynomial M. N. O. Ikhile J. of NAMP



The efficiency of an interval method is similarly, E,(n) = (K, )aw (3.10)
whereas the efficiency of the combination methodctviemploy both point and interval
arithmetic, for example (1.2), is E.. (n) =[(K, —)K* + 2z

(3.11)
see [14], wherewm, is obtained from (1.21) witl# (n) and ¢,(n)as the normalised total

cost of basic arithmetic operational count in tlienpand interval method constituting
the hybrid combination method respectively. Tha{®f12,2.15) is similarly given as

1- p? M1 M18p(n)+6) (n)
E(n)= [ﬁ(Kp-l)wfj (K, -1)+1 A=01 (3.12)

herem, given by (2.21), is the minimum number of iteraoto achieve a minimum
accuracy ofo(10") in r™ and £™ simultaneously. However, we could in the estimate

of E, (n) useR-order of the constituent method instead of ordecamvergence. To
compute the efficiency index of the methods abbieworthwhile

to adopt the optimised computational complexityrdoof real arithmetic operations in

[3].

4.0 Results from numerical experiments and conclusion.
Consider the problem of isolating the eigenvaluethe Hessenberg's matrix,
P[1]:
8+12 1 0 0
0 6+9 1 0
0 0 4+6 1
1 0 0 2+3
Det(H -2 )=z*—-(20+30i) z° +(175+ 420 ) z* +(2300-450 )z —2857-2880
in the disks{z"™}" :t=12 by starting with the inclusion diskg® ={h R}

R =0.4(0.2)1.2. We have considered (3.8) in the form

Z.(S+1) = Z(S) _ 1
1 N9[a 1 * (a 1 ’
— ! +
HE® 2 El z® -2 +C? }Z;ilzfs) -z +C¥
Zmh = g - : (4.1)
i i 1 _ n 1 "
Ni(m) };.1 Zi(m) _ZJ(O)
and with updatingz{™ = z™ - R T 1 - I . The improved Maehly's
N Bz o
i i ] 1 J
method is
Z( =g (4.2)
- (s) _ 7(s) (s)
e SINV(Z? -z +C)
]

iZj
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Tables (4.1- 4.6 ) show the results of the numegoanputations using methods (4.1).
The maximum radii © = i|\=/]|(zix)>n<{rj“)}are compared with results from [14] displayed ini¢a

(4.2 ). The exact eigenvalues of the Hessenbergtex H, which are indeedthe zeros
of P(z)= Det(H -z )are in Table 4.1, but the last digit may be in erro

Table 4.1 Exact zeros ofP,(z) = Det(H -2l )

7.99650507021978 + 11.99932088106346
6.01045579118225 + 9.00205697329131
3.98954420881768 + 5.99794302670865
2.00349492978029 + 3.00067911893660

Table 4.2:Error in Point Maehly's Method (4.25:%)

C¥=NW® C¥ =0
s=1 1.1(-2) 1.1(-2)
s=2  9.4(-11) 1.2(-7)

Table 4.3: Maximum radii for P[1]

Algorithm (4.2), C! = N[© Algorithm (4.1);C{? =H [®
R@ o4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2
r  40026) 6.1(-26) 83(-26) 1.2(-25) 1.3(-25) 628 1.0(-28) 1.4(-28) 1.7(-28) 2.2(-28)
r@D  16(28) 24(-28) 3.3(-28) 4.3(-28) 5.3(-28) 178y 2.6(-28) 3.6(-28) 4.6(-28) 5.6(-28)
Table 4.4: Maximum radii for P[1]
Algorithm (4.1), C{*) =0
R@ o4 0.6 0.8 1.0 1.2
rY  go(21) 1.2(20) 1.7(20) 2.1(-20) 2.7(-20)
rY  gg(20) 1.3(28) 1.8(-28) 2.3(-28) 2.9(-28)
Table 4.5: Maximum radii for P[1C, ; = N,
Algorithm (4.2), Z.'2 Algorithm (4.2); Z"
RO g4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2
r® 1.6(-5) 2.4(5) 3.3(5) 4.2(-25) 5.2(-5 8.8(-6) .4(5) 2.0(-5) 27(-5) 3.5(-5)
r®  15(21) 24(-20) 5.6(-20) 2.0(-28) 5.8(-19) 328y 3.9(-22) 2.3(21) 9.8(-21) 3.6(-20)
r®®  98(49) 18(48) 2.3(-47) 1.4(-46) 1.1(-46) 150) 2.9(-50) 7.5(-49) 8.8(-49) 1.5(-47)

Table 4.6: Maximum radii for P[1]
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Petkovic [14; p. 51,52]

Algorithm (3.7); p.51 Algorithm (3.8); p.52
R(O) 0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2
r® 3.3(-:3) 5.4(3) 7.9(-3) 1.1(-2) 1.5(-2) 3.6(-3) .563) 1.2(-2) 3.5(-2) 7.7(-2)
I’(Z) 3.9(-7) 1.4(6) 3.7(-6) 8.4(6) 1.7(-5) 1.4(-6) .3¢6) 3.5(-6) 3.2(-4) 1.6(-3)
r® 2.8(-15) 5.1(-14) 4.5(-13) 2.7(-12) 1.3(-11) 13) 5.2(-12) 1.8(-10) 2.2(-8) 1.1(-6)

Compare these with results in table (4.6) from &atk[14].
Appendix
The error propagation in the Wang and Zheng's methodand its enhancement

The Wang and Zheng's method, from [14] is the famiilmethods
4.,(z”)

VARSI S k=123,.. (1
N N R RN RIS PAMERE3) M)
where
1 1)
S&?(D=;§M(m) v=1(1)k 2)
An improvement of this is the new class of cor@ttmethods
(s)
ng+1) =Z(.S) _ 4(71,] (Zi ) ;k=1,2,3,... (3)
C T 4,087)-B8(2).95(2)...8(2))
where

1 v
S12)= = $ (v -2 +6)) v =1k @
i
for a fixed k. The terma® is as defined, a correction factor introduced fritr@ point
method z* =z -c® of order p to enhance the convergence rate of dise bmethods
(1). The choice is influence

by efficiency consideration. To establish the emoopagation of the new family of
methods (3) and for a simplified analysis, is teuase that the zeros of the polynomial
are simple, even then the conclusion is still vedidmultiple zeros, we re-arrange (3) as

(s)
i =z -[if”((;i) ))] 1 : (5)
%)) - B.(92(2),9(2),..9(2))

K.j

(s) )~k
K, j AT

. . . - . . ) u} u]
By this, this method can be written in a new notaof lettingz;,z;r;,ri,z;,z; represent
Zfs) Z(S+1) r(s) r(5+1) z(s) z(s+1) as
i i Ll B | '

; — _ Ak-lvj(zj) -1 _ Ak—l,j(zj) 1
£ =7 [Ak,,-(zj)](Hz") A [Akyj(zj)M{uj;p,.}] ()
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where the definitions are that

H., =1‘ﬁ8k(8“(2>,sz,,»(2),/\ 8.,(2))={u;:n)]
u =1-T,;
0 = Rad (B (99(Z),92(Z)A . 9(2))) (7)
a2 ; " "

K, j j
with
1 (s) (s) 1 (s) (s)

T =5 (o) B (SH@A 850(2))= B len@mn sizp)

K. j i K. j i

and

9,(Z:8)=3 S  B=0Lv=1(1)k; (8)

j {Ak-l,j( Z )J U,
=z - ;
i j Ak,j(zj) |Uj |2_(pj )2

f = Rad (ZDJ ) = [ 4| ad 9)

Because
4., (2") 1

2 (7] (%) {kﬂz(»_”) B, (S(1).87(A)A ,SW))} (10)

K. j i B i

where we have set

zZ -

j i

sv,j(A)=§(

iz

j v=1(1)k (11)

the method (3) reduces to the error relation

1
N s{n‘j(ﬁ)ti -t +(AM (BB (s (A s 0 ))—Tz,i(ﬂ)n

£ = 12
| AT 2
On simplification, employing the identities
AE—BE=%;AK—BK=(A—B)§BjAk"’1,k21 (13)
SA ¥ B =

I
o

. 1 .
establish that—(—)=o ). Furthermore, it can be seen that
4.z
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T, =1

4,.(z)

_[ olem)B=0
_{o(e" k)+o(r € ) B= 1 =2 19)

in the notations of [9,16], in which thes) =o(&*r ). Conclusively, is the error relation

B.(S,(A)A S, (1))-T,,(B)

0

r =0(£“1r );

N :0(r2£3k+1)+0(rz£zm)+{0(5‘”“)%0( £<) p=1 (15)

: o(sp“) £=0

of the methods in (3) for a genekabndp. Considering dominant terms, the fact that
le|< e<r and we can put =o(r), thus the errors in the family of methods (3) mgtes
its effect as

o[, Tl sl ol 6
gj {[O(r(s)z)_'_o((g(s) g(s) Zklfﬂ 0 ( )
The R-order of convergence of (3) is deduced byliegtpn of the Schmidt theorem

accordingly on this error-relations in (16) whidsult is stated in (2.28) and (2.29). The
Gauss-Jacobi style of updating in @times is

(5+L+1) A k—1j(z(5) )

Zj = ZES) - 5 5 (17)
a,, (zﬁs))—Bk[s(S“ (2).85(2)A ,Si,T“)(Z)J
with
S‘fTT)( 7 )=_i[|NV[Zﬁs) _Zi(5+a) +Ci(5+q))j ’V:]_(l)k (18)
0=012A ,q-1g=123A
(S+71) S+é
the error propagates in the manner given py =0(r( q)( e® )“j;
9\ =)’
H[r q J ]“’Hf q J “0(““) ) B=1
(s+—=)

g ' = (29)

[o((e<s>)k)o[[r(“j)Jz]w{[e(“Z)Jp”o((e<s>)“): p=0

The Gauss-Seidel updating of the iterates on (&sgi

(+2h 4 (ZES))

q - — 5(s) _
Z, =z

-1,

w (20)
Ak,(zm)_sk[ y T(z)a “q)(z),/\ ,sf“)(Z)J

where now
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o+l
+

9V zy= 8 v 20 -2 .3 v [ 202 e ;
v,j ( )_.; Zj i i=zj;r1 Zj i i ’ (21)

v=1(1)k
The error effect is

I
Uy

-1 (s+2) n 9 \°
of & |+ % of| &7 | ) |: B=0
i i=j+1

-1 (s+9%1y n (s+9) z
: O[“:i ‘ J+_z 0((“ qJ )]- B=1

(22)

I
iy

|

The lower bound of the R-order of convergence @) @nd (20) is similarly found by
application of the Schmidt theorem on the erroatiehs respective, which is a subject of
a future discussion, but how this can be donegslighted in [9]. Conclusively, in the
above, setting the correction term to zero in &,20) imply thaip = 1, in each case the
resultant analysis gives the error propagationhef hasic Wang and Zheng's Method
accordingly.
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