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Abstract 

 
 

In the numerical inclusion and isolation of the zeros of a 
polynomial in an interval on the plane, hybrid combination methods have 
been found quite useful for their virtue of easy construction and reduced 
computational cost with respect to interval arithmetic operations, while 
still providing restrictive inclusion for the respective zeros simultaneously. 
In what now follows, consider a collection of combination methods arising 
from efficient enhancement of a class of basic simultaneous numerical 
inclusion methods under two different updating procedures of the 
generated iterates. The accuracy of the methods will be illustrated by 
insightful numerical experiments. 
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1.0 Introduction 
1.1 The hybrid combination of iteration methods for zero inclusion 

Consider the numerical inclusion of the zeros{ }N
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of degree n, by combination of point and interval inclusion arithmetic. Indeed, an 
approach of reduced computational cost is obtained by this hybrid combination of a point 
arithmetic method with an interval inclusion method applied once and only in the final 
stage of the iteration, see [14]. The hybridisation is such that the interval method provides 
the needed inclusion for the zeros. This is an efficient method that saves cost with respect 
to disk arithmetic operations on real time implementation. In this regard, is the class of 
combination methods  
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N)(j 11= , for a fixed l and k, in which kl ≤ , kl =  or kl > , where   
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and  
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The summation without index runs through all nonnegative integers { }
k)(llq

11= for which 
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are satisfied simultaneously.  A few of these ( ))s(

jj,k z∆ , are  
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For simple zeros, ( ))s(

jj,k z∆ is easily computed from  
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The ;Bk  k)(v 11= are the Bell's polynomials in the points { }vz,...,z,z,z 321 given by the 
recursion 
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It should be noticed that the point method in the combination (1.2) is applied m  number 
of times, while the inclusion method once only and in the final stage of the algorithmic 
process.  The order of the point and interval arithmetic method in (1.2) is 2+= lK p and 

IK 2+= k respectively.  The circular interval given as { } { } 0>∈⊄=≤−= r,z;r;zrzw:wZ  is a 

disk or circular region of centre z and radius r.  The parametric representation, { }Z z r= ;  
is usually adopted with the definitions that r = Rad(Z) and z = Mid(Z), see [3].  It 
degenerates to the centre point, z  if however, 0=r , but this is without hindrance to our 
analysis, more interestingly interval arithmetic is consistent and compatible with point 
arithmetic.  There is improvement of the convergence of (1.2) if the correction )s(

j,wC , is 

judiciously introduced, so that instead,  
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where for example the correction could be taken as 
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amongst other useful alternative choices of a corrector, this choice is efficient since )s(

j,wC is 

readily available. Note  
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j,wC is a method of its own right and therefore say that 

it is a corrector of order p. The instances 11 == k,l  and 21 == k,l where the correction 
is )s(

i,C1 , form the cases considered in [14]. A further practicable example of the above is 

when 2== kl  with the correction taken as )s(
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are the non-overlapping initial disks isolating the respective zeros.  It is noted that the 
root iterations, [3], are inefficient for combination purposes because of the difficulties in 
the computation of radicals and the delusion therefrom on the appropriate k-th root to 
choose.  In general, for a basic circular interval process with order IK (integer), under a 
correction of order p, it is deduced, see the appendix herein and with respect to the 
notations therein, that the error jjj z λε −=  in the interval process of the improved Wang 

and Zheng's method,   
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for a fixed k, propagates its effect in the way  that ( )1−
∧
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where )s(

iC  is the correction term which enhances convergence, is taken from the point 
method =)s(
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The number z  is the conjugate of the complex point z  and 211 II ZZZ ⊆⊆− .  The inclusion 
relation 
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instructively implies that the methods need be implemented as it is presented.  Similarly, 
the equivalent point method 
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of (1.9) with  
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for a fixed k, propagates its error effects according as 
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convergence requirement of the independent methods in (1.2) especially with respect to 
initial point/disk separation is similarly obtained as in [**9] for k=1,2. Thus for a point 
method of order PK (integer), here the radius is set to zero from (1.11), the error is 
deduced to propagate as  
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from (1.16).  For inclusion method of order IK without correction,  
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obtained by setting )m(
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)( εε =0  from (1.17) into (1.19), for any combination method of 

which PK  is the order of convergence of the basic point process and IK  is the order of 

convergence of the basic interval method. It is instructive that rj
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iterations need be carried out by the combination process with the meaning that, Int(A) = 
integer part of A. To have both ),m(r 1 and ( )1,mε to the minimum )(o t−10 of accuracy, a 

minimum of =M { }j,j
MMax

21=
 number of iterations are required by the hybrid inclusion 

method (1.2), in most instances 1M  and 2M may not differ significantly in magnitude.  
The numberM  therefore, may conveniently be estimated by M1 .  Generally, as implied 
in (1.21,1.22) the order of accuracy increases steadily with an increasing number of the 
iterations. We wish now consider some efficient ways to improve accuracy in a 
combination method of the type in (1.2) by application of corrections and updating of the 
iterates.  To this end, lets start from considering when there is no correction in the point 
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 For an inclusion method with correction of order 2p  
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Then the rate of convergence, if 1=β is seen from  
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for ),m( 1ε and that of ),m(r 1 is given by (1.25) and if the point process is corrected as well, 

then  
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by setting )m(

p

)( εε =0 from (1.17) into (1.21). Here, we can estimate that  
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for ),m( 1ε  and for ),m(r 1 , 
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It can therefore be seen that the method introduced in (1.23) with correction and the 
centred inversion( )0=β , will give improved order of convergence of the iterates than 
(1.2) especially with respect to the centres of the disks, when ,p,p 221 ≥ ,K I 3≥ 3≥pK  with 

the point iteration at least 3=m  number of steps; and if without correction in the interval 
method, then ,K p 2≥  1011 ,;p == β .  

 
2.0 The application of updating procedures to the generated iterates 

In the combination method the desire is to apply interval arithmetic only once, to 
save considerable cost of disk arithmetic, for improved inclusion of the zeros, the Gauss-
Seidel type updating procedure is appropriate in the inclusion part of the combination, by 
this  
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Considering (2.2) where of course 2p  is the order of the corrector )*(

i,uC 0  in the inclusion 

method and if there is no need for correction set this to be 12 =p , and with 1=β the 
middle terms in the above brackets of the second expression are to be ignored since its 
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order of magnitude is smaller compared to the other terms; we know 1<≤≤< rrii εε  when 

convergence sets in, in the long run on m , therefrom, 
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refer to the appendix. Therefore, if no correction in the point process as it is in (1.2), 
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as inferred by inserting (1.17) into (2.3), and as for a corrected point process as well, then 
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using (1.18). However, the least number of iterations to calculate ),m(r 1 to the accuracy of 

order 110 >>− t;t  can be estimated similarly from 
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Now since )(
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00 =ε  then, 
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to have that for the method (1.2) with )z(SC )s(

j,v as defined in (1.23), 
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This expression could also be obtained from writing (2.6) as  
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from (2.5), then 
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respectively.  Now, if Gauss-Jacobi updating is applied several times ;q)(( 110 −=δ  
),,q Λ32= to the point method under correction, we have 
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for a chosen k, where  
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Then using (19) in the appendix the error in (2.12) propagates as 
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see [9, equation (6.6)].  But by the Gauss-Seidel type updating, which now 
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for a chosen l and efficient )s(

l,wC ,then again using (21) in the appendix, the propagation of 

error is such that  
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here ,...,,q;q)( 321110 =−=δ  In this case the error propagation with once application of 
Gauss-Seidel type updating in the inclusion part of the combination method, is somewhat 
complicated, but this is obtained by setting )m(

jp ε  derived from (2.14) or (2.17) 

accordingly to )(

j

0ε in (2.3). Like before, the least number of iterations to calculate ),m(r 1 to 

the accuracy )(o t−10  in this circumstance, can then similarly be estimated from 
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and for ),m( 1ε  is to use  
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where )m(

jp ε  is derived from (2.14) or (2.17) accordingly. In particular 
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is the case from (2.14). Thus 
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for ),m(r 1  using (2.18) or (2.19) and for ),m( 1ε  
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from (2.19) using (2.20). The error behaviour in (2.17) is complicated, but can be 
approximated by (2.14) in the sense of writing (2.17) as  
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It could be expressed that 
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from which, 
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by assuming that pK  is reasonably large enough to ensure that( )1−pK)s(

p )( εο is 

insignificant in magnitude when convergence sets in, in the long run on s.  Then (2.14) in 
some sense approximates (2.17) in error terms and the conclusions (2.21, 2.22, 2.23) 
therefrom reasonably apply in this case as well. The application of these updating 
procedures gives lesser number of iterations to the desired accuracy than the other 
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approaches considered above as would be noticed from (2.21), (2.22) and (2.23). Based 
on the experience of [9], we have thus to remark that  
* When updating is needless in the point method in (1.2) then the order of the correction can be such 
that 12 1 −≤≤ pKp . But when Gauss-Jacobi updating )q( 2≥ is to be applied on the point method then 

the order of the correction need not exceed 21 =p , higher order correction may present only marginal or 

not any advantage in convergence, see [9, equation (6.9a)].  Similarly, if Gauss-Seidel type updating is to 
be employed, then the order of correction has the flexibility of lying in the range 12 1 −≤≤ pKp .   

* Applying the Gauss-Seidel type updating )q( 1= in the inclusion part of the 
method of the hybrid combination (1.2; 1.23), with the choice of inversion as 1=β , then 
the order of correction in the inclusion method need not exceed p2 2= , because in this 
case there is only a marginal convergence advantage in higher order correction, in the 
otherwise of 0=β  then we can have 12 2 −≤≤ IKp . It is quite possible to pick )*(

i,uC 0  to 

have IKp ≥2  or in fact, { }Ip K,KpMaxp 12 12 −+≤≤ without hindering the efficiency of the 

process, such possibility is considered in what now will follow and examples of such 
methods are given in the sequel.  

Interestingly, we could take the correction,)*(

i,uC 0  in the interval part of the 

algorithm to be  
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since it is known to be available in the beginning of the point iteration and still retain the 
efficiency of the hybridisation.  When )z(SC )s(

j,l  is as in (1.3), the order of the point 

arithmetic method in (1.2) is ,lK p 2+= and if it is as in (1.7) then we may speak of order 

as the R-order of convergence of which lower bound is found to be  
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of R-order, obtained from (16) in the appendix, by a generalisation of the analysis in [9], 
[16] on the corrected Wang and Zheng method. It can now be seen in (2.29) with 0=β  
the marginal advantage in convergence of having)*(

i,kk C 0  in place of )*(

i,kC 0 . In particular, 

suppose (1.2) has its components as defined in (1.3) and (1.23) let  
 
 

kl = then IKp =2 , this incidentally, gives maximum lower bound R-order of convergence 
for the inclusion method when 0=β  in the hybrid combination.  This method will be 
illustrated by some particular examples.  Finally, the idea of the application of the 
updating approach highlighted earlier under a correction process gives by far further 
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improvement of results in all.  The case in which the order of correction in the point 
arithmetic part is such that pKp ≥1 often turn out to be inefficient and may therefore not 

be recommended, though like before, it leads to maximum lower bound R-order of 
convergence for the point iteration in the combination algorithm, see [9] and in general 
when there is no intention of applying correction at all in a constituent method of the 
combination, set 00 =)(

i,uC  or 00 =)*(

i,uC and correspondingly 11 =p  or 12 =p  in all of the 

above analysis accordingly.  
 
3.0 Examples of the hybrid combination methods and their efficiency index 

The first, is the simplest member of the collections of (1.2, 1.7, 1.23) 
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in the class of the hybrid combination of methods (1.2), with )*(
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However, a method of improved computational complexity to the above is  
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and another is the combination method 
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It will be noticed that the cases of the methods for which ,...,k;CC )*(

i,kk
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i,k 2100 == are as 

efficient as the others. In any case, it is not mandatory to have Ip KK ≤  that is kl ≤ and 

more so, the order of correction in the point method may be chosen not to differ from that 
in the interval algorithm as in some methods of the above.  Finally, an example of method 
for which Ip KK >  arise when kl > in the hybrid, 
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Furthermore, this and the class of methods which Ip KK ≥  are the methods favoured by 

theory, because their error propagation decay far more rapidly compared to when 
Ip KK < , see for example (1.20), (1.26) or (1.28).  The updating procedures 

(2.1,2.12,2.15) can easily be applied accordingly to these highlighted methods.  Several 
other similar hybridisations of methods by this can easily be constructed. Obviously in 
(1.2), for higher order k the methods becomes uncontrollably robust, unwieldy, 
complicated and with the implementation quite demanding.  However, for the 
performance evaluation of an iteration method, are its computational complexity and 
efficiency index. In a point arithmetic process the complexity )n(pθ takes into account the 

normalised total number of basic arithmetic operations per iteration, where the efficiency 
is given by  

( ) )n(ppp K)n(E θ
1

=     (3.9) 
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The efficiency of an interval method is similarly,  ( ) )n(III K)n(E θ
1

=   (3.10) 
whereas the efficiency of the combination method which employ both point and interval 

arithmetic, for example (1.2), is   ( )[ ] )n(I)n(pMM

pICM KK)n(E θθ ++−= 1

1
1 11  

  (3.11) 
see [14], where 1M  is obtained from (1.21) with )n(pθ  and )n(Iθ as the normalised total 

cost of basic arithmetic operational count in the point and interval method constituting 
the hybrid combination method respectively. That of  (2.12,2.15) is similarly given as 

10111
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here 1M given by (2.21), is the minimum number of iterations to achieve a minimum 
accuracy of )(o t−10  in ),m(r 1 and ),m( 1ε  simultaneously. However, we could in the estimate 

of )n(ECM  use R-order of the constituent method instead of order of convergence.  To 
compute the efficiency index of the methods above it is worthwhile  
 
 
to adopt the optimised computational complexity count of real arithmetic operations in 
[3]. 
 
4.0 Results from numerical experiments and conclusion. 

Consider the problem of isolating the eigenvalues of the Hessenberg's matrix H, 
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and with updating 
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Tables (4.1- 4.6 ) show the results of the numerical computations using methods (4.1).  
The maximum radii { })s(

jn)(j

)s( rMaxr
11=

= are compared with results from [14] displayed in table 

(4.2 ).  The exact eigenvalues of the Hessenberg's matrix H, which are indeed, the zeros 
of =)z(P4  )zIH(Det − are in Table 4.1, but the last digit may be in error. 

Table 4.1: Exact zeros of =)z(P4 )zIH(Det −  
 

7.99650507021978 + 11.99932088106346i… 
6.01045579118225 + 9.00205697329131i… 
3.98954420881768 + 5.99794302670865i… 
2.00349492978029 + 3.00067911893660i… 

 
Table 4.2:Error in Point Maehly’s Method (4.2): )s(ε  

 
)s(

j

)s(

j NC =   0=)s(

jC  
s=1 1.1(-2)  1.1(-2) 
s=2 9.4(-11)  1.2(-7) 

 
Table 4.3: Maximum radii for P[1] 

________________________________________________________________________
____________ 

Algorithm (4.1), 
)(

i

)(

i, NC 00

2 =    Algorithm (4.1);
)(

i

)(

i, HC 00

2 =  

__________________________________________  ___________________________________________________ 

R ( )0
 0.4 0.6 0.8 1.0 1.2  0.4 0.6 0.8 1.0 1.2 

 ________________________________________________________________________________________________________ 

r ( , )1 1
 4.0(-26) 6.1(-26) 8.3(-26) 1.2(-25) 1.3(-25)  6.6(-29) 1.0(-28) 1.4(-28) 1.7(-28) 2.2(-28) 

r ( , )2 1
 1.6(-28) 2.4(-28) 3.3(-28) 4.3(-28) 5.3(-28)  1.7(-28) 2.6(-28) 3.6(-28) 4.6(-28) 5.6(-28) 

________________________________________________________________________
_____________ 
 

Table 4.4: Maximum radii for P[1] 
__________________________________________ 

Algorithm (4.1), 0=)s(

j,tC     

___________________________________________   

R ( )0
 0.4 0.6 0.8 1.0 1.2   

 _______________________________________________ 

r ( , )1 1
 8.2(-21) 1.2(-20) 1.7(-20) 2.1(-20) 2.7(-20)   

r ( , )2 1
 8.8(-29) 1.3(-28) 1.8(-28) 2.3(-28) 2.9(-28)   

 
Table 4.5: Maximum radii for P[1]; jj,t NC =  

_____________________________________________________________________________________ 

Algorithm (4.2); 2IZ     Algorithm (4.2); 1IZ  
__________________________________________  ___________________________________ 

R ( )0
 0.4 0.6 0.8 1.0 1.2  0.4 0.6 0.8 1.0 1.2 

 _________________________________________________________________________________________________________ 

r ( )1
 1.6(-5) 2.4(-5) 3.3(-5) 4.2(-25) 5.2(-5)  8.8(-6) 1.4(-5) 2.0(-5) 2.7(-5) 3.5(-5) 

r ( )2
 1.5(-21) 2.4(-20) 5.6(-20) 2.0(-28) 5.8(-19)  3.7(-23) 3.9(-22) 2.3(-21) 9.8(-21) 3.6(-20) 

r ( )3
 9.8(-49) 1.8(-48) 2.3(-47) 1.4(-46) 1.1(-46)  1.0(-50) 2.9(-50) 7.5(-49) 8.8(-49) 1.5(-47)  

_________________________________________________________________________________________________________ 

 
Table 4.6: Maximum radii for P[1]  
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________________________________________________________________________
_____________ 

    Petkovic [14; p. 51,52] 
Algorithm (3.7); p.51    Algorithm (3.8); p.52  

__________________________________________  __________________________________ 

R ( )0
 0.4 0.6 0.8 1.0 1.2  0.4 0.6 0.8 1.0 1.2 

 ________________________________________________________________________________________________________ 

r ( )1
 3.3(-3) 5.4(-3) 7.9(-3) 1.1(-2) 1.5(-2)  3.6(-3) 6.5(-3) 1.2(-2) 3.5(-2) 7.7(-2) 

r ( )2
 3.9(-7) 1.4(-6) 3.7(-6) 8.4(-6) 1.7(-5)  1.4(-6) 7.3(-6) 3.5(-6) 3.2(-4) 1.6(-3) 

r ( )3
 2.8(-15) 5.1(-14) 4.5(-13) 2.7(-12) 1.3(-11)  1.3(-13) 5.2(-12) 1.8(-10) 2.2(-8) 1.1(-6) 

_____________________________________________________________________________________ 
 
Compare these with results in table (4.6) from Petkovic [14]. 

Appendix 
The error propagation in the Wang and Zheng's method and its enhancement 

The Wang and Zheng's method, from [14] is the family of methods  
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An improvement of this is the new class of correction methods  
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for a fixed k. The term )s(

iC  is as defined, a correction factor introduced from the point 
method )s(

i

)s(

i

)s(

i Czz −=+1 of order p to enhance the convergence rate of the basic methods 
(1).  The choice is influence  
 
 
 
 
by efficiency consideration.  To establish the error propagation of the new family of 
methods (3) and for a simplified analysis, is to assume that the zeros of the polynomial 
are simple, even then the conclusion is still valid for multiple zeros, we re-arrange (3) as   
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By this, this method can be written in a new notation of letting jjjjjj z,z,r,r,Z,Z
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where the definitions are that   
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Method (3) is equivalently, 
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Because 
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the method (3) reduces to the error relation 
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On simplification, employing the identities  
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establish that ( ) ( )k
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=1 .  Furthermore, it can be seen that  
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in the notations of [9,16], in which then ( )ro k

j ερ = .  Conclusively, is the error relation  
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of the methods in (3) for a general k and p.  Considering dominant terms, the fact that 
ri ≤< εε  and we can put ( )ro=ε , thus the errors in the family of methods (3) propagates 

its effect as 
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The R-order of convergence of (3) is deduced by application of the Schmidt theorem 
accordingly on this error-relations in (16) which result is stated in (2.28) and (2.29).  The 
Gauss-Jacobi style of updating in (3) q -times is  
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The Gauss-Seidel updating of the iterates on (3) gives 
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where now  
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The error effect is  
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The lower bound of the R-order of convergence of (17) and (20) is similarly found by 
application of the Schmidt theorem on the error-relations respective, which is a subject of 
a future discussion, but how this can be done is highlighted in [9]. Conclusively, in the 
above, setting the correction term to zero in (4, 18, 20) imply that p = 1, in each case the 
resultant analysis gives the error propagation of the basic Wang and Zheng's Method 
accordingly.  
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