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                                                         Abstract 
 

Atonuje and Okonta in [1] developed the Cooley-Turkey Fast 
Fourier transform algorithm and its application to the Fourier transform of 
discretely sampled data points N, expressed in terms of a power y of 2.  In this 
paper, we extend the formalism of [1] Cookey-Turkey Fast Fourier transform 
algorithm.  The method is developed in this paper to guarantee the 
application of (C-TFFT) algorithm for arbitrary factors say 21PPN = . 

 
pp 121 - 124 

1.0 Introduction 
 We shall consider the discrete Fourier Transform of N points, usually written for any continuous 

function f (x) as   ( ) ( )∑
−

=
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for 1210 −= N,,,,,u Λ .  By defining W as the complex number 

    NleW sin2−=      (1.2) 

The Fourier transform now becomes ( ) ( )∑
−
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(1.3) simply means that the vector f (x) is multiplied by a matrix whose ( )thx,u  element is a constant W to 

the power ux.  Thus the matrix multiplication produces a vector result whose complements are ( ) s'uF .  It 

is a documented fact that the general discrete Fourier transform (1.1) for N values of u corresponding to the 
discrete values 1210 −= N,,,U Λ  is evaluated as follows 
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Evaluating of F(0) requires a total of (2N - 1) operations, since we have to perform N multiplications, (that 
is ( ) ( )⋅expxf  and N – 1 additions. 

 Similarly, evaluation of F (1) requires a total of (2N - 1) operations and so on unit the evaluation 
of F(u) over all N values of u.  This requires a total number of 2N  and )N(N 1−  operations. 

The Cooley-Turkey algorithm results in matrix factorization process, which introduces zeros into 
the factored matrices and as a result reduces the required number of multiplications and additions.  The 
case where the number of sampled points is ,N y2=  a base 2 operation was presented by [1]. 
 In this paper, we develop the fast Fourier transform algorithm which removes the assumption that 

,N y2= an integer.  We show that significant time-savings can be obtained as long as N is highly 
composite, that is, ,mPPPN Λ21=  where P is an integer. 
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2.0 The new (C-T) Fast Fourier transform for arbitrary factors :ppn 21=  

Assume that number of points N satisfies the relationship, ,PPN 21=  where 1P and 2P  are integer-

valued.  To formulate the FFT algorithm for this case, we first express n and k indices in the discrete 
Fourier transform 
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We observe that the method (2.2) of writing the indices allows us to give a unique representation of each 
decimal integer.  Using equation (2.2), w can re-write (2.1) as 
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Rewrite 
( ) 11011 pknpn

w
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 and we obtain 
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where we use the fact that 121 == Npp
ww  

From (2.4), we rewrite the inner sum of equation (2.3) as a new array 
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If we expand the terms 
enkw  the outer loop can be written as 
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The final result can be written as ( ) ( )10201 n,nfn,nf =     (2.7) 

Thus as in base 2 algorithm presented by [1], equations (2.5), (2.6) and (2.7) are defining the FFT algorithm 
for the case .PPN 21=  

3.0 Application 
3.1 The formulation of the base 4 C-TFFT algorithm 
 Consider the case N = 16.  By the C-T algorithm, we write .PPN 4421 ×==   That is, we will 

develop the base 4 fast Fourier transform for the case N = 16.  Using arbitrary form, we can represent the 

variables n and k in the discrete Fourier transform ( ) ( ) 1210
1

0
0 −=∑=

−

−
N,,,n,wkfnf nk

N

k
Κ  

 (3.1) 
In a base4 or a quaternary number system 
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Equation (2.3) then becomes ( ) ( ) 0
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Rewriting 14nk
w  we have 

 
( ) [ ] 1041410421161041116101414 knnkknknknknknknnk
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The term in the brackets is equal to unit, since .w 116 =  we can now rewrite (3.1) as  
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The term in the brackets becomes 1 and we have ( ) ( ) 00243
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Equation (3.5) represents the formulation of the FFT algorithm.  Considering the inner brackets of (3.5), we  
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If we rewrite (3.6) in matrix notion, we get 
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The matrix (3.7) is obtained from equation (3.6) by using the relationship 
( )Nmodnknk ww = .  Recall that 

[nkmod(N)] is the remainder upon division of nk by N.  Similarly, we write the outer summation of (3.5) as 
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Equation (3.8) can be written as 
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Enumerating the outcome in (3.9), in matrix form we have 
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Again the matrix form (3.10) is obtained from (3.9) by using the relationship )Nmod(nknk WW = .  From 
equation (3.5) and (3.8), we have by equating these two  )n,n(f)n,n(F 10201 =   (3.11) 

We note from (3.11) that the final result )n,n(f 102  as obtained from the outer sum is bit-reserved order 

with respect to the desired values ).n,n(f 01  this is the scrambling resulting from the FFT algorithm. 

 We now combing the inner sum, outer sum and (3.11) as 
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4.0 Conclusion  
 Equation (3.12) represents the original C-T formulation of the discrete FFT algorithm for very 
composite sample point 441621 ×=== PPN . 

We term these equations as recursive in that the second equation is computed in terms of the first. 
The FFT algorithm formulated here, results in matrix factorization process, which algebraically 
decomposed the discrete Fourier transform (3.1) into factored matrices with zeros introduced.  This results 
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in the reduction of the required number of complex multiplication from 
2

to 212 PP
N  and complex additions 

from N(N - 1) to .PP 21  
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