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Abstract 
 
 

In this paper the modeling of super diagonal bilinear moving average 
time series models are considered.  Other determination of bilinear models 
based on the observed covariance structure of the data is pointed out.  Linear 
and bilinear moving average models that have identical covariance structure are 
fitted to both simulated and real-time series data.  Forecasts obtained for 
stationary and invertible linear and bilinear models are compared  
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1.0 Introduction 

Let Ζ∈t,X t  and Ζ∈t,e ,t  be two stochastic processes defined on some probability space ( ),P,F,Ω  

where { }ΛΛ ,,,,,Z 101−= .  We assume that Zt,et ∈  is independent, identically distributed with ( ) 0=teE  and E 

(et
2) = ∞<2σ .  A bilinear model is one which is linear in both Ζ∈t,X t  and Ζ∈t,et  but not in those variables 

jointly.  Let Λ,a,a 21 , hr b,b,b,a Λ21 and kj,mi,ij ≤≤≤≤ 11θ  be real constants.  The general model of order  

(r, h, m k) or SBARMA (r, h, m, and k) is   ∑ ∑+∑+∑+=
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 (1.1) 
for every t in Z.  The first part on the right side of (1.1) can be identified as the autoregressive part of the 
process ;t,X t Ζ∈ the second part as the moving average part and the third part as the ‘pure’ bilinear part.  

The super-diagonal model (1.1) is completely bilinear if r = h = 0.  In [3] after obtaining the vectorial 
representation of (1.1) showed that all bilinear models having that vector form are strictly stationary, 
ergodic and unique under suitable conditions on a matrix built 

on .andji,kj,mi,,b,,b,b,a,,a,a ijhr

2

2121 11 σθ ≥≤≤≤≤ΚΚ the two important features that emerge 

from their work are the following: 
(1) The presence of the moving average part makes no impact on the existence problem of (1.1) 
(2) The conditions for strict stationarity of autoregressive moving average or ARMA models are 
obtainable from the conditions for strict stationarity of bilinear models 

We do not know of any nice condition under which the model (1.1) is invertible.  The inevitability 
of special cases of (1.1) have been studied by [8], [11], [13], [14], [15].  [11] established that the presence 
of autoregressive part makes no impact on the invertibility problem of his special case of (1.1).  A 
sufficient condition for invertibility of diagonal bilinear models have been derived [9]. 

In [2] it has been shown that if Zt,X t ∈ is a stationary bilinear process defined by (1.1), then its 

covariance function is the same as that of an ARMA process of order (r, max (h,g))g = min(m,k) with 
autoregressive coefficients being functions of hr b,b,b,a,a,a ΛΛ 2121  and .ji,kj,mi,ij ≥≤≤≤≤ 11θ   

[15]  also arrived at the same conclusion after obtaining a Markovian representation of bilinear models.  [15 
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considered the estimation of the parameter of the bilinear models.       
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[7] have considered the estimation and prediction of the subset bilinear model 
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where nkkk ≤≤≤ Λ211 are subsets of the integers (1, 2…., p) and p is the order of the best linear 

autoregressive  
 
 
model that fits the data The statistical properties, such as stationary , invertibility and covariance structure 
of (1.2) and (1.3) are not yet known. 

The main objective of this paper is to study the estimation of the model (1.1) with r = 0.  From the 
works of [2] and [12] the model (1.1) with r = 0 has same covariance function as some moving average 
process of order q = max(h,g) or MA(q).  One benefit of determining the covariance structure of the time 
series data is that it enables us to partially answer the question of order determination for bilinear models.  
In what follows, we refer to (1.1) with r = 0 as a super diagonal bilinear moving average model of order (h, 
m, k) or SBMA(h, m, k,)  
 
2.0 Estimation and order determination 

In this section, we consider the estimation of the parameters of the super-diagonal bilinear moving 

average model ∑ ∑ ∑
=
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where the Ζ∈t,et  are independent and each is distributed ),(N 20 σ  Here we assume the model is 

stationary and invertible.  We also assume we have a realization { }nX,,X,X Λ21  of the time series 

Ζ∈t,X t .  To obtain estimates of the parameters we proceed as in [7], [15] and apply the method of least 

squares to minimize 

    ∑=−
t

te)(S 2θ      (2.2) 

with respect to the parameters T

mg'g,ggg,mmh ),,,,,,,,,b,,b,b( θθθθθθθθθ ΚΛΛΛΛ 12221211121 += .  When 

minimizing ( )θS  with respect to ,θ  the normal equations are nonlinear in .θ   The solution of these 

equations require the use of nonlinear algorithm such as Newton-Raphson. The variance of θ̂  is estimated 

from 
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is the matrix of second-order derivatives.  Consistency 

and asymptotic normality for conditional least squares 

are complicated to verify because of the invariability 

problem of bilinear models.  For diagonal bilinear 

models consistency has been proved by [10].  If the 
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option linear model is an ),(qMA  the and analyst is 

considering super diagonal bilinear time series models, 

then (2.1) is worthy of further investigation. The 

maximum lag of the input process Ζ∈t,et  involved in (2.1) 

is q =max(h,g) where g =min(m,k).  In considering (2.1), 

one can always take k ≤  m, so that q = max(h,g), with g = 

(m,k) = k.  This implies that one can always take k ≤  q 

and k ≤  q in (2.1), leading to   ∑ ∑ ∑++=
= ≥= =
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 (2.5) 
The choice of the value of m is made on the basis of the information criteria of [1], which is given by 
  AIC = Nlog 22 +σ̂  (independent number of parameters)  (2.6) 

where     
N

)(S
ˆ

∧

−=
θ

σ 2      (2.7) 

and N is the number of observations used for calculating ).(S
∧

−
θ  

Model (2.1) may have )(MA λ  autocorrelation function, and yet =≠ qλ  max (h, g). Consider for 

example, the strictly stationary process Ζ∈t,X t  satisfying 

ttttt eeXbeX ++= −−− 231 θ      (2.8) 

where Ζ∈t,et  are independent and each te  is distributed N(0, 1).  For model (2. 8), h = 1, m = 3, k = 

2, θθθθθθ ===== 3222312111 0,  and g  = q =2.  It can easily be checked that 0=)X(E t  
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Model (2.8) has MA (1) autocorrelation function.  Our simulation results haves shown that model 
(2.1) has the same covariance function as some MA(q) provided h ≥  g = min (m, k).  When g> h and ggθ = 

0 model (2.1) has the same covariance function as some MA .gh),( ≤≤ λλ  

In considering model (2.1) for a series with MA(λ) autocorrelation function, we consider model 
(2.5) for λ≤q and use AIC criteria to determine m that produces the minimum AIC value.  After the 

minimum AIC value has been obtained, some moving average and bilinear coefficients may not be 
significantly different from zero.  A parsimonious (subset super-diagonal moving average) model can then 
be achieved by eliminating the coefficients that will not lead to further reduction in the AIC value.  
 
3.0 Simulation results 
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In this section we give a brief summary of our simulation results to demonstrate the use of the 
order of the optimal linear models for order determination of bilinear models. In what flows, Ζ∈t,et  is a 

sequence of independent identically distributed random variables with te  having normal distribution with 

mean 0 and variance .∞<2σ   Methods of moment calculation are those used in [8] and only the results are 
given. 
3.1 Example 1 

Let Ζ∈t,X t  be the strictly stationary ergodic process satisfying 

 ttttt eXe)XXb(X 1221111 −−− ++= θθ    (3.1) 

for every t in Z.  The strict stationary condition of [3] implies that the roots (in modulus) of the equation   
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lie inside the unit circle.  It can easily be checked that 
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where   )]X)(X[(E)K(R ktt µµ −−= −     (3.8) 

A sufficient condition for the invertibility of (3.1) is (see [11] ) 

  )XX(E)X(E)()(bb ttt 12111

22
21

2

11211111
22 221 −+++++> θθθθθθθσ  (3.9) 

We have generated 100 observations from the model (3.1) with ..and.,.,.b 01203050 2
2111 ==== σθθ   

The theoretical and estimated autocorrelations; sample mean and variance of the generated model (3.1) are 
given in Table 1  

The estimated autocorrelations suggest an MA (1) process. The fitted MA (1) model is  
   

( ) ( ) ttt aa..X ++= −⋅±⋅± 10857019630
3717034730     (3.9) 

with Var )a( t  =2.0622, leading to 106 percent increase in the error variance. Since the optimal linear 

model is MA(1), we consider (2.5) with q ≥  1.  The AIC value is found to be minimum when q = 1, m = 2 

and estimates obtained are: 98500034102327004530258500465051530 2

2111 .ˆ,..ˆ,..ˆ,..b̂ =±=±=±= σθθ  

and AIC = 4.49. 
3.2 Example 2 

Let Zt,X t ∈  be the strictly stationary ergodic process satisfying 

  tttttttt eeXeXeXX +++= −−−−−− 333322221111 θθθ     (3.10) 

for every t in Z. 
 
 
 
 
 

Table 1: Theoretical and estimated autocorrelations, mean and variance of simulated series 
 

Model (3.1) Model (3.10) Model (3.19)  
LAG Autocorrelations 
k THE EST THE EST THE EST 
1 0.36 0.38 0.50 0.57 0.59 0.60 
2 0.00 0.12 0.27 0.34 0.18 0.20 
3 0.00 0.11 0.08 0.09 0.00 0.08 
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4 0.00 0.06 0.00 0.04 0.00 0.05 
5 0.00 -0.02 0.00 -0.03 0.00 -0.02 
6 0.00 0.00 0.00 0.02 0.00 -0.03 
7 0.00 -0.10 0.00 -0.03 0.00 -0.04 
8 0.00 -0.03 0.00 -0.12 0.00 -0.08 
9 0.00 -0.13 0.00 -0.16 0.00 -0.15 
10 0.00 -0.14 0.00 -0.13 0.00 -0.17 
11 0.00 -0.13 0.00 -0.14 0.00 -0.13 
12 0.00 -0.08 0.00 -0.08 0.00 -0.08 
13 0.00 -0.05 0.00 -0.06 0.00 -0.05 
14 0.00 0.02 0.00 -0.05 0.00 -0.06 
15 0.00 -0.09 0.00 -0.08 0.00 -0.09 
16 0.00 -0.11 0.00 0.02 0.00 -0.05 
17 0.00 -0.01 0.00 0.06 0.00 0.04 
18 0.00 0.03 0.00 0.01 0.00 0.01 
19 0.00 -0.03 0.00 -0.03 0.00 -0.08 
20 0.00 -0.06 0.00 -0.07 0.00 -0.09 
 MEAN 
 0.30 0.35 0.90 0.95 0.70 0.79 
 VARIANCE 
 1.83 2.59 2.15 3.03 3.19 5.19 

Note:  THE means Theoretical; EST means Estimated 
The strict stationary condition implies that the roots (in modulus) of the equation  
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3

2

2
22

1
2 =−−− φφφ yyy    (3.11) 

lie inside the unit circle where .,,i,i 3211 == σθφ  it can be checked that 
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2312 µφφσφφφφσφφ +++++=− )(M)XX(E tt                                           (3.15) 

 2
3213

2
3 µφφφφσ +++=− )()XX(E tt      (3.16)  

 .k,)XX(E ktt 32 >=− µ        (3.17) 

Thus, .k,)k(R 30 >=  

We have generated 100 observations from the model (3.10) with 2040 3311 .,. == θθ  and the 

theoretical and estimated autocorrelations, sample mean and variance of the generated model (3.10) are 
given in Table 1.  The estimated autocorrelation suggest an MA(2) process. The optimal linear model 
obtained is 
   t

).(
t

).(
t).(t aa.a..X +++=

±
−

±
−± 09470

2
09490

127940
349105695094500    (3.18) 

with Var )a( t  = 2.0448, leading to 104 percent increase in the error variance. Since the option linear 

model’s MA(2), we consider (2.5) with .q 2≥   The AIC value is found to be minimum when 33 == m,q   

and without the moving average part. The estimates are: 

,..ˆ,..ˆ,..ˆ,..ˆ 0598027130059800838006450161100630041720 22312111 ±=±−=±=±= θθθθ  

..AIC,.ˆ,..ˆ,.. 4369442002380218400598008840 2
3332 ==±=±=

∧

σθθ  

The very small values of some of these coefficients 

suggest the parsimonious bilinear model (3.10) with the 

following estimates: 

..AIC,.ˆ,..,..,.. 59498560019902128004860310700486043510 2
332211 ==±=±=±=

∧∧∧

σθθθ  
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3.3 Example 3. 
Let Ζ∈t,X t  be the strictly stationary ergodic process satisfying 
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for every t in Z.  The stationary condition implies that the eigen values of the matrix 
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From (3.25), we obtain    R (k) = 0, k > 2    (3.29) 
We have generated 100 observations from the model (3.19) 

with .,.,.b,.b 211121 400350550 θθ === = 

01300050 2
22 .and.,. == σθ .  The theoretical and estimated autocorrelations, sample mean and variance 

of the generated model (3.19) are given in Table 1.  The estimated autocorrelations suggest an MA(2) 
process.  The fitted MA(2) model is   t

).(
t

).(
t

).(
t aa.a..X +++=

±
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± 09940
2

09830
1

36300

256607915077310  

 (3.30) 
with Var ,.)a( t 12983=  leading to 213 percent increase in the error variances. Since the optimal linear 

model is MA(2) we consider (2.5) with .q 2≥   The AIC value is found to be minimum when q = 2, m = 2 

and the estimates obtained are  

...,..,..b,..b 0275006250047004327005370465600637054530 211121 ±=±=±=±=
∧∧∧∧

θθ

 ..AIC,.ˆ,,. 957979100414029020 2
22 ==±

∧

σθ  

The estimates of the bilinear coefficient21θ  is very small when compared with the estimates of the other 

bilinear coefficients. The elimination of 21θ gave an AIC value of 11.16, leading to the retention of 21θ  in 

the bilinear model. 
3.3 Remark. 

When we fit linear model to series tX  whose sample mean is not zero, the zero mean series 

XX t − is considered or a constant term is added to the linear model.  The mean of the bilinear model (2.1) 

is zero if and only if ( )k,mming,gg ===== 02211 θθθ Λ .  The three-simulation results show that we do 

not always need to add a constant term or model the zero mean series when considering bilinear models. 
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4.0 Application to real time series data. 

We gave applications of our modeling procedure to two real time series data. 
4.1 IBM common stock closing prices. 

The original data, which consists of 360 observations, is series B in [5].  [5] fitted MA(1) model 
separately to the first and second halves of the differenced series as well as to the complete series.  Using 
the results obtained, they produce evidence that in later periods the MA(1) model suffers a significant 
change in parameter value.  We confine ourselves to the first half of the series.  The MA (1) model fitted to 
the first 169  

 
observations is     t

).(
tt aa.X +=

±
−

07240
126340    (4.1) 

with Var ,.)a( t 804324=  where tX  is change in price.  Some of the autocorrelations of the squares of 

estimated residuals of (1.1) appear significant: suggesting non-linearity bilinear series. Based on our 
modeling procedure, we consider (2.5) with .q 1≥   The estimated bilinear model is 

   t
).(

tt
).(

t ee)X..(X ++=
±

−−
± 00850

11
07040

0272023910     (4.2) 

with ..ˆ 5327232 =σ   [8] considered the first 169 trading days.  They fitted the bilinear model  

tttt eeZ.Z += −− 11020     (4.3 

to the residuals tZ  obtained from the MA(1) model 

    ttt . ΖΖΖ += −1260     (4.4) 

On eliminating tΖ  between (4.3) and (4.4) we obtain  

   ttttt ee.e. ++= −−− 111 020260 ΧΧ     (4.5) 

which is similar to the bilinear model (4.2) obtained 

using our modeling procedure.  The forecasting 

performance of the linear and bilinear models is also 

given by [8]. 
4.2 Ben Nevis temperatures. 

Next, consider the 200 daily dry bulb temperatures at noon on Ben Nevis referred to in [4] as 
series A*.  [4] identified, estimated and diagnostically checked the MA(2) model 
   tttt aa.a. +−−= −− 21 30502380Χ     (4.6) 

for the 200 observations with Var( ) 9117⋅=ta where tX is change in temperature. However, some of the 

autocorrelations of the squares of estimated residuals of (4.6) appear significant. 
Considering the 200-point data, and employing our modeling procedure, the resulting 

parsimonious bilinear model obtained is  

( ) ( ) ( ) ( ) ( )
tttttttttt eeXeXeXeeX +⋅−⋅+⋅+⋅−⋅−=

⋅±
−−

⋅±
−−

⋅±
−−

⋅±
−

⋅±
−

01370
23

00790
22

01370
13

06880
2

06830
1 0213001240027002887022670  (4.7) 

with 6643152 ⋅=σ̂  leading to 12.6 percent decrease in the error variance. 

 The invertibility of the fitted bilinear model (4.7) has not been checked given the present state of 
knowledge.  A comparison among the linear and bilinear models dealing with forecasting performance 
cannot, under this circumstance, be given. 
 
5.0 Conclusion 
 We have developed a modelling procedure for superdiagonal bilinear moving average time series 
models that identify as moving average models under covariance analysis.  We started by obtaining the 
optimal linear moving average model that fits the nonlinear time series data.  The order of the optimal 
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moving average model in conjunction with the information criterion of [1] constitute natural techniques for 
order determination of superdiagonal bilinear models.  Our method of estimation has been applied to IBM 
Common Closing Stock Prices and Ben Nevis Temperature data. 
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