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Abstract

In this paper the modeling of super diagonal bdmmoving average
time series models are considered. Other detetimmaf bilinear models
based on the observed covariance structure ofdteeid pointed out. Linear
and bilinear moving average models that have idahtiovariance structure are
fitted to both simulated and real-time series datéorecasts obtained for
stationary and invertible linear and bilinear medsle compared
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1.0 Introduction

Let X,,tJZ ande ,t0Z be two stochastic processes defined on some pifitpapace (.Q,F ,F’),
where Z :{,/\ ,—1,0,1,/\} . We assume the®, , tdZ is independent, identically distributed wiEE(q): 0 and E

(ed =0'2 < 0. Abilinear model is one which is linear in bo¥, , t 1 Z and e , t 2 but not in those variables
jointly. Leta ,a,.A , a b ,b,A bandf 1<i<m,1< j<Kk bereal constants. The general model of order

[l

m kK
+Z ZHU Xt—i et—j

i=1j=1

r h
(r, h, m B or SBARMA (1, h, m,andKk) is X, =g +Xax_ +xybe.
=1 i1

(1.1)
for everyt in Z. The first part on the right side of (1.1) can be idegtifis the autoregressive part of the
processX, ,t 0.Z; the second part as the moving average part and the third phet ‘psire’ bilinear part.
The super-diagonal model (1.1) is completely bilinear# h = 0. In [3] after obtaining the vectorial
representation of (1.1) showed that all bilinear models hathag vector form are strictly stationary,
ergodic and unique under suitable conditions on a matrix ilt bu
ona, a, K ,a b b, K b8, ,1<i<sm1<j<k,i=2jand o° the two important features that emerge
from their work are the following:
Q) The presence of the moving average part makes no impdw eristence problem of (1.1)
(2 The conditions for strict stationarity of autoregressnoving average or ARMA models are
obtainable from the conditions for strict stationarity ihbar models

We do not know of any nice condition under which the m¢tldl) is invertible. The inevitability
of special cases of (1.1) have been studied by [8], [11], [18], [15]. [11] established that the presence
of autoregressive part makes no impact on the invertibilibblpm of his special case of (1.1). A
sufficient condition for invertibility of diagonal bilear models have been derived [9].

In [2] it has been shown that X, , t 0 Z is a stationary bilinear process defined by (1.1), then its
covariance function is the same as that of an ARMA processdef ¢r max 6,g))g = min(m,K with
autoregressive coefficients being functionsapfa, A ,a, ,b, b, A b, andg,,1<i<m,1<j<k, iz |.

[15] also arrived at the same conclusion after obtaining &dwem representation of bilinear models. [15

Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004.
Super-diagonal bilinear moving averagetime serieslheanyi S. Iwueze J. of NAMP



considered the estimation of the parameter of the bilinear models

X, :a°+jzlaix"i +é§lﬁij X. 6, te (1.2)
[7] have considered the estimation and prediction of the shiisetar model

X, =a, +§aki X + jiﬂbrjsj X 8 +8 1.3)

where 1<k <k,A <k, are subsets of the integers (1, 2.p),and p is the order of the best linear
autoregressive

model that fits the data The statistical properties, such asnstat , invertibility and covariance structure
of (1.2) and (1.3) are not yet known.

The main objective of this paper is to study the estimatfdhe model (1.1) witlh = 0. From the
works of [2] and [12] the model (1.1) with= 0 has same covariance function as some moving average
process of ordeq = maxf,g) or MA(g). One benefit of determining the covariance structurdetime
series data is that it enables us to partially answer theigquesgtorder determination for bilinear models.

In what follows, we refer to (1.1) with= 0 as a super diagonal bilinear moving average model of @irder
m, K or SBMA(, m, k)

2.0 Estimation and order deter mination
In this section, we consider the estimation of the parameténe super-diagonal bilinear moving
k
h m
average model X: = jzlqu—j +.7;>j _Zleu' Xt-i%-j+q (2.1)
= =112 J:

where thee ,t0Z are independent and each is distribute¢0,0°) Here we assume the model is
stationary and invertible. We also assume we rmvealization{xl,XZ,A ,Xn} of the time series
X, t0Z. To obtain estimates of the parameters we proasdd [7], [15] and apply the method of least
squares to minimize

SO)=xre (22)
with respect to the paramete®@=(b b, A b,,8,,6, A .6,.6,N .0,N.6,6,..KE. ). When

99’7 g+lg’

minimizing S(Q) with respect tod, the normal equations are nonlinear éh The solution of these

equations require the use of nonlinear algorithohsas Newton-Raphson. The varianceéofs estimated
from

V(8) 025°H™(8) 2.3)

where H(8)=(°S(8)/08,36,) (2.4)

Is the matrix of second-order derivatives. Consistency
and asymptotic normality for conditional least squares
are complicated to verify because of the invariability
problem of bilinear models. For diagonal bilinear

models consistency has been proved by [10]. If the
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option linear model is an mA(g), the and analyst is
considering super diagonal bilinear time series models,

then (2.1) is worthy of further investigation. The
maximum lag of the input process ¢.toz involved in (2.1)
is q =max(h,g) where g =min(m,k). In considering (2.1),
one can always take k < m, so that g = max(h,g), with g =

(m,k) = k. This implies that one can always take k < q

and k < g in (2.1), leading to X, =e+3be, + ¥ 36X ¢,

1=1i2j j=1

(2.5)

The choice of the value afiis made on the basis of the information critefifly which is given by
AIC =Nlogo”® +2 (independent number of parameters) (2.6)

)
where o’ :T 2.7)

o
andN is the number of observations used for calculat(g).

Model (2.1) may haveMA(A) autocorrelation function, and yat#z g = max f, g). Consider for
example, the strictly stationary procegst 0 Z satisfying
X, =be, +6X_e_, +e (2.8)
where e ,t 0 Z are independent and ea€h is distributedN(0, 1). For model (2. 8h=1,m= 3,k =
2,6,=6,=6,=6,,=0,6,=60 andg =q=2. It can easily be checked tha{X,)= 0
og*(1+b*)/(1-0%6%),k=0
E(X X_ )=s0%h, k=+1 (2.9)
0, k#0,+1

Model (2.8) has MA (1) autocorrelation functionurGimulation results haves shown that model
(2.1) has the same covariance function as dd#) providedh = g = min (m, B. When g~h and Ggg =

0 model (2.1) has the same covariance function e 8A(A),h< A< g.
In considering model (2.1) for a series with M§(autocorrelation function, we consider model
(2.5) forq<Aand useAIC criteria to determine m that produces the minimAle value. After the

minimum AIC value has been obtained, some movingrage and bilinear coefficients may not be
significantly different from zero. A parsimonio(subset super-diagonal moving average) model aam th
be achieved by eliminating the coefficients thdt mot lead to further reduction in thdC value.

3.0 Simulation results
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In this section we give a brief summary of our daion results to demonstrate the use of the
order of the optimal linear models for order deteation of bilinear models. In what flows,t 0.2 is a

sequence of independent identically distributedioam variables withg, having normal distribution with

mean 0 and variance® < «. Methods of moment calculation are those use8Jiaifid only the results are
given.
3.1 Example 1

Let X,,t0Z be the strictly stationary ergodic process satisfy

Xt = (b+ellxl—l +021x1—2 bl—lx el (31)
for everytin Z. The strict stationary condition of [3] impligsat the roots (in modulus) of the equation
y'-o* W~ 020212 -0 (3.2)
lie inside the unit circle. It can easily be chedkhat
p=E(X,)=0°0, (3.3)
(1_ 0-20112 - 0-26212 )E( xf) = 0-2(1+ b* ) + 204611[ 611 + b( 011 + 621 )]
+ 20-4911921[ b + JZ 11( 2911 + 021 )]’ (34)
B(XX.,)=0"[b+0°6,(6,+6,)+0'6,", (3.5)
E(X, X )=0' k>1 (3.6)
E(X)-0';, k=0
R(K)={0’[b+0°0,(8,+8,)], k=1 (3.7)
0,k#z01
where R(K)=E[( X, = t)( X, = 4] (3.8)

A sufficient condition for the invertibility of (3) is (see [11])
1>b° +20°06,(6,, +6,) +(6, +6:" JE(X,” )+ 20,6,E(X.X.,)  (3.9)

1721

We have generated 100 observations from the m@&l&) with b=0.5,6, =0.3,6,, =0.2 and o* =1.0.

The theoretical and estimated autocorrelationspgamean and variance of the generated model §8el)
given in Table 1

The estimated autocorrelations suggest an MA (dgqss. The fitted MA (1) model is
X, = q.3473+ 0.3717a_, +a, (3.9

+0[1963) (xom8s57)
with Var(a, ) =2.0622, leading to 106 percent increase in thmer erariance. Since the optimal linear
model is MA(1), we consider (2.5) with® 1. The AIC value is found to be minimum whegs 1,m= 2

and estimates obtained ate= 0.5153+ 0.0465 8, = 0.2585+ 0.0453 6, = 0.2327+ 0.0341,5> = 0.9850

and AIC = 4.49.
3.2 Example 2

Let X,,t0Z be the strictly stationary ergodic process satisfy
Xt = ellxt—IQ—l + 622X1—2 Q—Z + 033xt—3et—3+g (310)
for everytin Z.

Table 1: Theoretical and estimated autocorrelatiorean and variance of simulated series

Model (3.1) | Model (3.10) | Model (3.19)
LAG Autocorrelations
k THE EST THE EST THE EST
1 0.36 0.38 0.50 0.57 0.59 0.60
2 0.00 0.12 0.27 0.34 0.18 0.20
3 0.00 0.11 0.08 0.09 0.00 0.08
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4 0.00 0.06 0.00 0.04 0.00 0.05
5 0.00 -0.02 0.00 -0.03 0.00 -0.02
6 0.00 0.00 0.00 0.02 0.00 -0.03
7 0.00 -0.10 0.00 -0.03 0.00 -0.04
8 0.00 -0.03 0.00 -0.12 0.00 -0.08
9 0.00 -0.13 0.00 -0.16 0.00 -0.15
10 0.00 -0.14 0.00 -0.13 0.00 -0.17
11 0.00 -0.13 0.00 -0.14 0.00 -0.13
12 0.00 -0.08 0.00 -0.08 0.00 -0.08
13 0.00 -0.05 0.00 -0.06 0.00 -0.05
14 0.00 0.02 0.00 -0.05 0.00 -0.06
15 0.00 -0.09 0.00 -0.08 0.00 -0.09
16 0.00 -0.11 0.00 0.02 0.00 -0.05
17 0.00 -0.01 0.00 0.06 0.00 0.04
18 0.00 0.03 0.00 0.01 0.00 0.01
19 0.00 -0.03 0.00 -0.03 0.00 -0.08
20 0.00 -0.06 0.00 -0.07 0.00 -0.09
MEAN
030 [ 035 [ 090 [ 095 [ 070 | 079
VARIANCE
183 [ 259 [ 215 [ 3.03 [ 319 | 519

Note: THE meansTheoretical; EST means Estimated
The strict stationary condition implies that theto(in modulus) of the equation

Y -a'y -g'y-¢ =0 (3.11)
lie inside the unit circle wherg =gg,i =123. it can be checked that
u=E(X,)=o(g+@a+@) (3.12
M, = E(X,")=k,(1+2" + 20 + 20 + 200, + 200, + 20.¢,) (3.13)
wherek, - o? /(1—@2 -’ —@2). :
(X X,)=(ap+0o M, +0°g(g+0,+9)+ 0" (90, +9.0,)+ i° (3.14)
E(X X,)=@geM, +d’g(g+@ +@)+o’qe + u1° (3.15)
E(XX,)=0'a(g+a +@)+u° (3.16)
E(X,X_ )= %, k>3. (3.17)

Thus, R(k) =0,k >3.
We have generated 100 observations from the mdgléD) withd, =0.4,6,, =0.2 and the

theoretical and estimated autocorrelations, sam@an and variance of the generated model (3.10) are
given in Table 1. The estimated autocorrelatioggest an MA(2) process. The optimal linear model
obtained is

X, =0.9450- 0.569%, , +0.349%,, +a, (3.18)

$0.2794) (£0.0949) (£0.0947)
with Var(a, ) = 2.0448, leading to 104 percent increase in ther esariance. Since the option linear
model's MA(2), we consider (2.5) witlh = 2. The AIC value is found to be minimum wher=3, m=3
and without the moving average part. The estimates
6,=04172+0063Q 6, =0.1611+0.0645 6, =-0.0838+0.0598 &, =0.2713+0.0598

é32 =0.0884+ 0.0598 é% =0.2184+0.0238 0=0.9442 AIC =6.43.

The very small values of some of these coefficients
suggest the parsimonious bilinear model (3.10) with the
following estimates:

g’n =0.4351+0.0486 522 =0.3107+0.0486 533 =0.2128+0.0199 0% =0.9856 AIC =4.59.
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3.3 Example 3.
Let X,,t0Z be the strictly stationary ergodic process satigfy

2 2 2
X =xbe, +2 26 X.&, +§ (3.19)
for everyt in Z. The stationary condition implies that the eigeruealof the matrix
Lo
L=8x8|4x4" 4x4 (3.20)
/4 49

Have moduli less than unity, where
o’6,; 0 0

o’6° 0’66, 0’66, 00, s )
L= 0 0 0 0 L, = 0’66, 06,6, 0 0
' 0 0 0 0 | 066, 0 0,6, 0
1 0 0 0 0 0 0 0
It can be checked that
U=E(X )=0%(6,+8,,). (3.21)
(1-0%(8,°+62,+6,7 E(X,*)=20%6,0,E( X, X, )+d,. (3.22)
(1-0°6,8,, )E(X X, )=0%6,6,,X(X*)+d, +d,. (3.23)
E(X,X_,)=0%[b,+u(6,+20,,)+20%6,6,,]. (3.24)
E(X X, )=4", k>2. (3.25)
whered, =o?’[1+b* +b,’ + 2,u(bl(811 +6,)+bd,)+20%(6,+8.,0,+6,°)] (3.26)
d, =0?[b +b,(b +(6,+6,,))] (3.27)
d,=0?[ ((26,+6,+6,)+0,,(ub +0°6,)] (3.28)
From (3.25), we obtain R(k)=0,k>2 (3.29

We have generated 100 observations from the m8ded)
withb, =0.55,b, =0.35,8,, =0.40,8,,.=
0.05,8,, =0.30 and g2 =1.0. The theoretical and estimated autocorrelationsp&mean and variance

of the generated model (3.19) are given in Tabl@He estimated autocorrelations suggest an MA(2)
process. The fitted MA(2) model is X =0.773%0.791%,_, +0.2566,_,+ 3,

(£0.3630) (#0.0983) (0.0994)

(3.30)
with Var(a, ) =3.1298 leading to 213 percent increase in the error maga. Since the optimal linear

model is MA(2) we consider (2.5) with=> 2. The AIC value is found to be minimum whgs 2, m =2
and the estimates obtained are

Bl =0.5453+0.0637, Bz =0.4656+ 0.0537, éu =0.4327+£0.0470 ézl =0.0625+0.0275
ézz 0.2902+ 00414 0=0.9791 AIC=7.95

The estimates of the bilinear coefficiéhy is very small when compared with the estimatethefother

bilinear coefficients. The elimination d,, gave an AIC value of 11.16, leading to the retentib &,, in

the bilinear model.
3.3 Remark.
When we fit linear model to serieX, whose sample mean is not zero, the zero mearsserie

X, - X is considered or a constant term is added to treatimodel. The mean of the bilinear model (2.1)
is zero if and only ifg, =6,, =\ =6, =0, g = min(m,k). The three-simulation results show that we do
not always need to add a constant term or modaldh® mean series when considering bilinear models.
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4.0 Application to real time series data.

We gave applications of our modeling procedurevim teal time series data.
4.1 IBM common stock closing prices.

The original data, which consists of 360 observegjas series B in [5]. [5] fitted MA(1) model
separately to the first and second halves of tfferdnced series as well as to the complete setikssng
the results obtained, they produce evidence thdatar periods the MA(1) model suffers a significan
change in parameter value. We confine ourselvésetdirst half of the series. The MA (1) modetdd to
the first 169

observations is X, =0.2634, , +a, (4.1)

(+0.0724)
with Var(a, ) =24.8043 where X, is change in price. Some of the autocorrelatiointhe squares of

estimated residuals of (1.1) appear significanggesting non-linearity bilinear series. Based om ou
modeling procedure, we consider (2.5) witkz 1. The estimated bilinear model is

X, =(0.2391%+0.0272X,_, )e_,*+¢€ 4.2)

(£0.0704) (£0.0085)
with g% = 235327 [8] considered the first 169 trading days. Thitsgd the bilinear model
Z,=002Z e, +e 4.3

to the residualZ, obtained from the MA(1) model
Z,=026Z_+2, (4.4)

On eliminating Z, between (4.3) and (4.4) we obtain

X,=026e_,+0.02X e +e (4.5)

which is similar to the bilinear model (4.2) obtained
using our modeling procedure. The forecasting
performance of the linear and bilinear models is also

given by [8].

4.2 Ben Nevistemperatures.
Next, consider the 200 daily dry bulb temperatuaesioon on Ben Nevis referred to in [4] as
series A*. [4] identified, estimated and diagnecatly checked the MA(2) model
X, =-0.238,_,-0.30%,_, +a, (4.6)
for the 200 observations with V@;)=17[91Where X,is change in temperature. However, some of the

autocorrelations of the squares of estimated ratidf (4.6) appear significant.

Considering the 200-point data, and employing oadeting procedure, the resulting
parsimonious bilinear model obtained is
X, =-02267%, _,-0[2887%_,+0[0270X, e +0[0124X, e _,-0[0213K .e_,+e (4.7)

t T 3%t t-2Ct-2 t-3%t-2 " St
(+ome83 (xome88) (+0m137) (+0m079) (+0m137)

with % =15[6643 leading to 12.6 percent decrease in the erroanaei.

The invertibility of the fitted bilinear model (4.has not been checked given the present state of
knowledge. A comparison among the linear and éélirmodels dealing with forecasting performance
cannot, under this circumstance, be given

5.0 Conclusion

We have developed a modelling procedure for su@gotdal bilinear moving average time series
models that identify as moving average models umdeariance analysis. We started by obtaining the
optimal linear moving average model that fits ttmnlimear time series data. The order of the ogdtima
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moving average model in conjunction with the infation criterion of [1] constitute natural technigufer
order determination of superdiagonal bilinear mededur method of estimation has been applied i 1B
Common Closing Stock Prices and Ben Nevis Temperatata.

Acknowledgement

The author is grateful to Professor G. C. Reinseld number of suggestions to improve the

presentation of the material.

References

(1

Alaike, H. (1977). On entropy maximization priple, in P. R. Krishnaiah (Ed). Applications ofatics, pp. 27-41, North-Holland,
Amsterdam.

Akamanam, S. I. (1983). Some contributionshi® $tudy of bilinear time series models. PhD Thdsniversity of Sheffield.

Akamanam, S. |., Bhaskara Rao, M. and Subramanyaifi986). On the ergodicity of bilinear timerigs models. Journal of Time Series
Analysis, 3, pp 157-163.

Anderson, O. D. (1976). Time Series Analysid &orecasting. The Box-Jenkins Approach. Buttetivand Company, London.

Box, G. E. P. and Jenkins, G. M. (1976). Tinexi€s Analysis: Forecasting and Control. Holden-[®gn Francisco.

Davies, N. and Petruccelli, J. D. (1986). Déteg nonlinearity in time series. The Statistici&6, pp. 271-280.

Gabr, M. M. and Subba Rao, T. (1981). The edimnaand prediction of subset bilinear time serngsdels with applications. Journal of
Time Series Analysis, 3, pp. 155-171.

Granger, C. W. J. and Anderson, A. P. (1978).irtroduction to Bilinear Time Series Models. Varigeck and Reprecht, Gottingen.
Guegan, D. and Pham, T. D. (1987a). Minimaditénversibilite des modeles bilineaires a temgsmi. C.R.A.S. Serie 1.t.448, pp. 159-162.
Guegan, D. and Pham, T. D. (1987b). A not¢henestimation of the parameters of the diagoitiablar models by the lest squares method.
Scandinavian Journal of Statistics: Theory and #&pibns.

Iwueze, 1. (1996) On the invertibility of siamary and ergodic bilinear time series models, ABAZVol. 24, pp. 113-119.

Pham, T. D. (1985). Bilinear Markovian represgion and bilinear models. Stochastic Processedteir applications, 2, pp. 295-306.
Pham, T. D. and Tran, L. T. (1981). On thetforder bilinear time series model. Journal oplgdl Probability, 18, pp. 617-627.

Quinn, B. G. (1982). Stationarity and inveiity of simple bilinear models. Stochastic Proses and their applications, 12, pp. 225-230.
Subba Rao, T. (1981). On the theory of bilingawe series models. Journal of the Royal StatisSiaciety Series B, 43, pp. 244-255.

Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004.
Super-diagonal bilinear moving averagetime serieslheanyi S. Iwueze J. of NAMP



