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Abstract

Using perturbation method, the shallow water wageation is
investigated. We are, however, interested in &% én which the incident
wave train propagate in the radial direction towarthe shoreline. This is
rather more general than the case in which thensaif progressive waves

propagate strictly in x—direction. The essentiaftpf this study is the
determination of the critical role associated wiltle width of the shelf and the
beach gradient in relation to the transformationtloé beach waves. There
from, it is deduced that the wave energy is andasing function of the beach

bottom gradient and the shelf width. The later $tiobowever, be finite.
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Further, the nonlinear interactions between the verains and the resulting

excitations of the seabed are also discussed.

pp 139 - 144
1.0 Introduction

This study concerns the evolutions of a train of th nearly uniform progressive waves
moving towards the shoreline obliquely. Incidentaly, the shoreline makes an angle with mean
direction of this approaching wave train. The cress of the reflected waves will not, therefore, be
parallel to those of the incident wave trains. Thelevelopment is therefore in accordance with the
behaviour of diffracted waves in which the anglesfdncidence and reflection are generally equal.
Traditionally, the appropriate framework for the fo rmulation of the above problem is the cylindrical
polar coordinate systems. The use of the polar catinate system in describing the evolutions of the
long crested shallow water waves with curved profd is quite universal in the field of dynamical
oceanography. For example, this approach provides realistic method of modeling the problems of
wave actions on structures that are cylindrical irshape. The cases in which the structures were
vertical surface — piercing circular cylinders wereconsidered by Hunt and Williams [1], Zohu and
Liu [2]). In these considerations, wave forces antlirning moments on the structure were efficiently

calculated.

However, what concerns us in this study is the intese wave activities near the shoreline
which are associated with the long crested wave tirzs approaching the shoreline obliquely. The
roles associated with the sea bottom gradiendr, and width of the shallow water.d, will be analysed
in this consideration. The width d in this contexts the distance measured seaward from the
shoreline over which an incoming swell is associatevith appreciable bottom pressure. Appreciable,
in that the bottom pressure induced by the wave shitd be active enough to excite micro-seismic

disturbances detectable even in the far field, Asdi3].

We shall confine our discussion to cases relating swell with mean wavelength of about
450m propagating in the beach with average depth @fm. Thus, the ratio 4/450 is quite small and the
shallow water theory can realistically describe theevolutions of this swell in the shallow water zone
In these considerations, previous calculations madey Okeke [4], Okeke and Asor [5] were quite
close to the observed data. Thus, the use of f@lluler’'s equations of hydrodynamics will not improve

the calculation quite significantly.
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The nonlinear shallow water wave equation had beentensively used in the description of a
number of beach phenomena. Because, most of the pi@us models concerned waves that were
approaching the shorelines at right angles, it i objective of this study to generalize previous

studies [6, 7], which concern the transformationsfeswell on a beach; and thus, incorporate the more

realistic case of oblique incidence in the model.

2.0 Specifications

In the polar coordinate system R, Z, 0), the origin is on the shorelineR is a measure of
radial distance seaward but from the origin,Z—axis points negatively towards the body of the wat
with © as the angle measured from the normal direction tthe shoreline. z=n(R,8,t) and Z = -h(R)

are the equations of the surface wave profile anche sea bottom topography respectivelypand g are

the constant water density and gravity acceleratiomespectively.
3.0 The basic equations governing the evolution ofiding-crested beach waves

gr and gg are fluid particle velocity components in radial and transverse directions
respectively for the motion associated with long-@&sted beach waves. Thus, the usual related

equations of hydrodynamics in the polar coordinatesystem are

00s o 99, % 0% __, 07 3.1)

ot oR R 06 oR
99, ,, 99 .9 99, on

+ +0 — 20 =y 3.2

06 s R R 06 /68 3.2)
0 0 on
—|R +h)|+— +h)|=R— 3.3
SRIRA(7+Ml+—la (7 + )] = RIT (3:3)

This model will describe the transformations of theold and smooth streamlined swell on a beach.
Thus, the parameter,O, which is the ratio of the vertical extent of theluid to the related wavelength
will be significantly small. Using the Stokes expssion as applied to variables in (3.1) to (3.3) iterms

of the parameter(d, then,
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d. =gy’ + 0 g +0(°) (3.4)
q, =0qy’+0% g +O(0*) (3.5)
n=0n"+0% n® +0(°) (3.6)

Thus, equations of order] are
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Following Okeke (1972), (3.7) has general solution
7P(R) = (#)23,( BR?) (3.9)
B=2w,(ag)” (3.10)

J, (B R’ ) is the zero order Bessel function of the first kid. wy, is the frequency of the dominant

wave train; hence
nw = Re{/yo(l)( R) cos(®%)exp(imt )} (3.11)

We now introduce the scalar potentialp(R,0,t) expressed by

LA L (3.12)

=" 9r ¥ T R o0

Insert (3.12) into (3.8) and integrate, then

1) 2 (1) 2 1)
0 [gpd@ ), ho'e” __ho'w (3.13)
oR R ) R 06° g ot’

Introducing h =aRin (3.13)
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d a¢1) PR PR
ﬁ(RZ e j+ a?z =5, aqt”i (3.14)

Let ¢(RB,t)= Re[qoo(“( R)sin (Z] '“’0‘} following from Equation (3.9) (3.15)

Using (3.14) with (3.15), then,

2 (1)

(1) 2
R? ddﬁ’z 2Rdez +(Rw° -mzj @’ =0 (3.16)
ag

This givesm = % and consequently, the same equation far {”(R); thus if c is the wave speed, the

. . g(d %
solution of (3.16) gives @”(R)=€[E] J.(BR?) (3.17)

#O(RO1) = Relg”(R) et} (3.18)

4.0 Second Order wave profilen'”(R,8,t)
Collecting Term irJ? from (3.1) to (3.3) and using the expansions (8438.6), then

(1) (2)

0 D 4q® 00 + % 0 - on (4.1)
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9 {q(“ @ 4 q2h ]_,_ [q<1) (1)+hq<2)] Ri”(a (4.3)
RELE ot

Use (4.1) and (4.2) to eliminatg? and qu) from (4.3), then
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(2) (1) (1)
ith[ga” +q, 2 g, % O H

OR R R R 06
0 g 0 (1)aq(l) qg(l)aq(l) 02 - -
h 2 4 R g® (1) (1) 4.4
6 HRMU 6 ot o || =5 e (R V) atae(” a’)  (4.4)
2,.(2)
:—Ral]
ot?

Re-arranging, and introdut¢R) = aR,
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Using (3.12), let n?(R6,t)= Re{qoggxz"% 4)} (4.6)
Again, using (3.5) and (4.6), we obtain
(2) (2)
R’ 06'22 +2R ag;{ —4(mt + 27 )/75,2) - (4.7)

m= % as before; and
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Linear approximation giveg/” ==—n'" as in (3.18) where k is the wave number and caresgty,

(]

R2q k2 ,7(1)2 15 ,7(1),7<1) ,7<1),7(1)” 3 ( 2
el == O SIS g T A8 e s T

), 16 R RZ 2 R R
(4.9)
where primes, here, indicate derivatives with respeR. From (3.9), take
%
0 (R=n2 (R L] @10

The simplification of (4.9) using (4.10) will inw¢ the derivatives ofJo(BR%). We shall use the
following to eliminate these derivatives
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J(x)==3,(x), J(x)="222 1(X) -J,(x), J;"(x)=%J1(x)—(}a+%)Jo(x))where primes  indicate

derivatives with respect ta Thus, using solution (3.9), then,

Re{£(7"} = Re[£(R)}

4.11
= Rjzd[A(R)Jf(ﬂR%)+AZ(R)J1(ﬁR%)Jo(ﬁR%)+A3(R)Jf(ﬂR%)] @1y
_i » _IBZR—3 R*%IB3 _ _% 3 -5, IB4R—2 _ IBZR—3
AR)I=16R 16 3 ARIEBREL AR T AR =T
Using (4.10), (4.7) takes the final form when m = %

R +Rp® _,_4‘"
a

(4.12) can be integrated using the method of thiatian of parameters. Thus, the general solugon
given by

» = Re{E(R)} (4.12)

%
n® = AJ(2BR%)+BY,(28R% )+ (28R% [« Lol ZﬁJM)UF;e{E(U)}da
(4.13)
_ 3 x V(2807 )R £(0)}
3,(28R?)] o) do
W(R)=W[ J,(28R*), Y,(BR* )] =— 2= (4.14)
71 BR"

A, and B are arbitrary constants, W stands for Wronskiaerd@nant. Finally,
7 (R)= \f P(R)= J%[Aouzﬁ R%)+B,Y,(26R" )]+l2ﬂk(2ﬂ R*)C,+C,J,(26R")

% %
C(R)= " 2280 J)zRe{E(a)} do. C(R)=|" (289 ;zRe{E(a)} do (4.15)

In the subsequent numerical calculations, we etilie following relation, which may be derived gsany
textbook on Bessel functions.

I4 ( 1) (2n )| (5)2" R" ¥, ( 1) (2n+2)| (ﬂ)zmanu
JJ(28R?) = nzo ()’ , J(2BR?)= nzo DT a2

% 4\ _ e (-1 (2n+1) BTURE
3(2BR?) 3, (2BR*)= 3 = s s

5.0 Discussion

It has been mentioned earlier that the motivatamtliis analysis is to investigate the criticalerol
associated with beach slope and its width in eiaubf swell near the shoreline. In normal beachez
swell activities before breaking are generally goed by the shallow water equations if the weaiheiot
stormy in the beach locality. Consequently, wdlshdize the wave periods associated with shalleater
swell in the subsequent numerical calculation. Width d of the beach can be estimated as a function of
wavelength using

the relationshipd = 0.0027

whereAK, is the change in the mode wave numbers withinathee train.

o

Thus, following [5] (2000),4K = 0051 with L, = 21K, K, being the mean wave number corresponding
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to wave length, L, for the swell. The interesting feature indicaitedolutions (3.9) and (4.15) is that both
first and second order wave height vary directlythaes square root of d. Consequently, these eqgtio
seem to have confirmed that the effective wavegimis on a beach demand that the width of thetbeac
shall be finite. In (4.15), the first two termsriothe complimentary solution and are of first arded so,
the particular solution will account for the secosmlution required. From these, Tables | and d ar
calculated. The main feature of the calculatienthe dominance of the wave component with perfd@ o
seconds for all the realistic valuesdof

Figure 1 is interesting in that, it illustrates tthhe wave height is an increasing function of the
beach bottom gradient. Further, wave energy ipgnnal to the square of its height. Thus, trevev
energy density will increase with increasing begddient. But wave energy density is closely salab
the microseismic energy density. This appearsitmast that the present theory is in agreement tivéth
observation regarding intense microseismic acéigsiprevalent in the neighbourhood of a steep coEst.
observation made by [8] concerning the intense @siismic events is in support of this conclusion,
considering the topography of the Irish sea coastdkrs with its steep coast from which considerabl
microseismic signals can radiate.

20m _|
ni
10m _|
N2
Om —] |
| O O | |
.05 .09 13 .19 .21 a

Figure |: Variation of); andn; as functions of beach gradienfor period T = 10sec

Table IComputation for €

T(© 6 7 8 9 0] 11] 12

d (km)
15 227| 25| .271] 310 280 261 .241
2.5 234 | 265 2800 321 286 269 250
35 263| 271 285 .33] 291 271 256
45 271| 281 291 341 298 278 261
55 278| .290] 298 352 300 .290 .296

Table Il: Computation for £

s) 6 7 8 9 0| 11| 12
d (km
15 13 | 15| 1611 210 158 148 132
2.5 138| .159| .168| 224 .16l 150 .140
35 141| .161| .169| 238 .17 .141 .148
45 150 | .168| 142 | 24 .17 168  .1%2
55 158 | .170] .176| 249 .18l 1740 .12
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Table Ill: Computation fon®(R, 106, t) in metres

I 7 8 9 0| 11| 12
d (km)
15 25 | 266] 263| 310 271 261 244
25 261| 263 268| 322 28D 268 248
35 265| 269 271| 34% 285 240 252
45 268| 270 280| 350 292 275 258
55 270 | 2.80] 2.95| 367 30L 281 262

Table IV: Computation fon® (R, 176, t) in metres

\T(;)\ 6 7 8 9 10 11| 12
d (k
15 0.51| 0.60] .72 91 72 65 41
25 0.63 .67 .78 .98 .81 .68 .48
3.5 0.68 71 .81 121 89 71 54
4.5 0.69 .79 .86 130 91 79 56
5.5 0.73 .80 91 137 92 82 .63
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