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Abstract

We present the Burgers’ equation as a balance between time
evolution, non-linearity and dissipation and use these properties to
examine the vanishing behaviour of the dissipation coefficient.
Furthermore, we undertake a rigorous mathematical analysis which
gives rise to multi-valued solutions after sufficient time and
discontinuities. Though the complete solution is single-valued for all
time, t, revelations from the equation of shock determination is
interesting in the determination of the random properties of the wave.
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1.0 Introduction
The initial formulation of the Burgers’ equation svas a turbulence model combining both non-
linear propagation effects and diffusive effecthe literature is very vast, and when considerea partial
differential equation, it can be used to describe analyse pulses or shock waves. It can also be
considered as a special form of the momentum emuddr irrotational, incompressible flows in which
pressure gradients are neglected. In its simpbest,fit is presented as

C, tcc, =1L, (1.1)
wherec_ is the non-linear dispersive term. The two termshe LHS of (1.1)c, +cc_, governs the wave

evolution with speedC. Following from the shallow water non-linear wasguations with the effect of
dispersion written as, +cc, +gn, =0 (C is particle velocity and; is free surface elevation), we can
consider the Burgers’ equation as a balance between time evolntiodinearity and dispersion. In
another consideration, the Burgers’ equation can be considerad imserplay between the non linear
steeping and the diffusion of a wave, [1]. This pasegseat challenge for both analytical and numerical
modelling. For instance, for a finite body like the Easiith a free surface and several internal zones of
differing physical properties, observed modes of propagatiesents the wave velocity as a function of the
frequency. Such modes themselves exhibit dispersive effébis study suggests that for the limiting case
of a vanishing dissipation coefficient;, i.e. v - 0, the solution of (1.1) reduces to the solution of
¢, +cc, =0 which is a simple non linear partial differential equatioterfused as a model problem for
fluid dynamical systems. This is also known as theisnigd Burgers’ equation, [2]. We thus produce an
exact solution of the Burgers’ equation as an initial valuélpm. The multi-valued solution to the
Burgers’ equation is obtained after sufficient time and dioaities asy — 0 Furthermore, the equation
for shock determination is obtained and analysed for a sHathgle hump.

2.0 Governing equations and their specifications
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The equation (1.1) can be considered as an exact solution fes wascribed by
P, +q,=0
a=¢(p)-vp,
with ¢(,0) considered as a quadratic functionmfand c(p)=¢'( ), [3]. For a general form of(0),
(1.1) takes the form

(2.1)

c +cc =vc, —vc'(p)p? (2.2)
The ratio of the two terms in the RHS of (2.2) igh® order of the amplitude of disturbance, whichkes
(1.1) a good approximation for small amplitude taton with v c"(0)p? been smaller thamc, in the
strength of the shock.

3.0 Mathematical formulation
This formulation will show that ag —» ,@he solution of (1.1) reduces to the solution of
c tcc, =0 (3.1)
with discontinuous shocks which satisfy
U =%(c1+c2), c,>U >c (3.1a)
with (3.1) re-written as
x=&+tF($) (3.2)
Following [4] and Hopf [5] we have
v d
=- P =-2v—Ing (3.3)
@ dx
as a non linear transformation that could reduc®) (b the linear heat equation. To do this, weonluce
c=y, (3.4a)
Thus,
d d , d
— +1 -y — 3.4b
dX wt 2 dX wx dX wxx ( )
Integrating,
Yo+ =, (3.5a)
7] =—2Vj%=—2|/ln¢ (3.5b)
~igg -¢;
S [ P ] (3.5¢)
Substituting the values of (3.5b, and c) into (3.9& have
2 2 2 42 2
242V b =—2u{p—xx—¢;} (3.5d)
¢ ¢ ¢ ¢
and so
9 =ve, (3.6)

which is now a linear diffusion equation. We shaflw consider the exact solution of the Burgers’

equation as an initial value problem. In that cdasation, for the initial value problem, we have
c=F(x)att=0, xOR (3.7)

which by appropriate transformations using (3.3fdmees another initial value problem for the heat

equation

¢(x)=¢>(x)=exp{—2—izF(/7)d/7} at t=0 (3.72)

The solution for (3.6) is
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P(x,t)= L 1<D(/7)exp{- (x-7) }d/] (3.7b)

NIV aun
By the definition of (3.7a), we can then rewrite/{® as
1 = 11 X-1)?
o)=L Tem| - 2 Feenanexpl -2 oy 370
A solution for (3.7) can now be easily obtainedr(8.3) by writing
o Lo
p(xt) = \/% fe g (3.8)
where G(/];x,t):EF(q)dq+% (3.9)
so that
o X—=17 )
| e e dn
c(x,t)=— 4 (3.10)
® - G(n;xt)
Ie 2v d/7

—o0

which is now an exact solution of the Burgers’ dguraas an initial value problem. We will now allo
x,t and F(x) to remain fixed whilst contributions to (3.10pnses from the neighbourhood of the

stationary point ofG , i.e. where
0G X=n _

—=F(n)-—~L=0 (3.11)
on t
Let 77 = &(X,t) be the point i.e. the solution of (3.11), then
F(&)= X;‘z (3.12
Using the method of stationary phase, and follovtimg definition above, we know that the contribatio
% _G(n)
from the neighbourhood of the stationary pojrt & in anintegral [g(#7)e 2 drn is
© _G(n) Vi% eV _G(4)
fo(m)e * dn=9(&),| =€ * (3.13)
~ G'(£)
Thus, by assuming that there is only one statiopaimgt £(X,t) satisfying (3.12), then
0 YW — _G - _G(¢&)
j—x URNT dn il 1 _2”711/ e (3.14)
-t t VG'(<)

© _S _G(¢)
and jexdn= 2"m/ e (3.15)
~ Ve'(6)

Therefore, from (3.10),
x—¢

C(X,t) DT (3.16)

with &(x,t) as defined in (3.12).

4.0 Discussion of Equation (3.16)
(3.16) is the asymptotic solution of the Burgerguation and can be re-written as

c=F(¢é) @)
X =& +tF(§) '
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which is the exact solution of (3.1) with the statiry pointé(X,t) as the characteristic variable. (4.1)

gives rise to multi-valued solutions after suffitidime and therefore discontinuities. But the ptate
solution (3.10) is single-valued for dll since (3.12) has two solutions for sufficientlyga value oft .
We shall therefore introduce some modificationffews:

Let the solutions of (3.12) b& and &, with & >¢&,. So, ¢ and &, will contribute to (3.14) and

(3.15). Thus,
i xX=¢, _
G(e’l)/zv Gn e G(é2)/ 2v
«/ " —4G(¢,)
}G (C( e—G(e'l)/Zv + ’Gn({ )e—G(Zz)IZV

If G(&,)2G(¢&,), thenasy » Othe exponent makes one of the terms very larggaced with the other
and vice versa. Thus (¢, ) << G(¢,), we have

E

c(xt)~

(4.2)

(4.3)
Butif G(&,)>>G(¢,), we have

X=¢, (4.4)

t
This makesé, and ¢, both functions of(x,t) and the criterionG(¢, ) <>G(¢,) will determine the
appropriate choice of, oré, for given (x,t). Inflections from &, to &, will therefore occur at those
values of( x,t) for which G(El)zG({ ) i.e. when

(x —52 (x=4)°

fRean + 22l = TR yap + 200 (45)
But both & and &, satisfy (3.12), i.e.

F)=X"E o X)) (4.6)
Thus,

1-Treryan = X'jz ARSI @72

which can be written analytically as
ffF(r/')dn'%{F(fl)+F(<2)}(<2—52) (4.7b)

(4.7a) is called shock determination. The disawssif this equation is in another paper. Gredghtsan
be obtained from [3]. The changeover in the choitéerms in (4.2) leads to discontinuity af x,t) as

v - 0. Following this analysis, we conclude that solusi@f Burgers’ equation approach those described
by (3.1) and (3.1a) ag - .0

5.0 Further discussions and conclusions

In [4] and Hopf [5], we see the proposition of the Burgers’ equation as a turbulence
model lacking certain properties for proper modelli ng. Even if there is no physical
behaviour to be modelled by this equation, it is st ill an interesting study because of its
light approach to non linear equations. With appro priate choice of initial conditions (a
decreasing speed with x), the equation leads to the formation of shocks. In case of an
inviscid fluid, multi-valued solutions appear. Aft er the shock formation the solution

decays while the maximum moves away from the shock position as a result of the

Journal of the Nigerian Association of Mathematical Physics, Volume 8 November 2004.
Burgers’ equation and shock Determinatiolihcent E. Asor. J. of NAMP



viscosity. The dissipation coefficient, v, is fixed in reality and also relatively small and SO
v - 0 is a good approximation. Even so, there are still distinctions between the limit

solution v - 0 and the solution for fixed small v, [3], and [6].
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