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Abstract 
 

 The one dimensional problem of analysing the dynamic 
behaviour of an elevated water tower with elastic deflection–control 
device and subjected to a dynamic load was examined in [2].  The 
constrained elastic system was modeled as a column carrying a 
concentrated mass at its top and elastically constrained at a point 
along its length.  A new solution technique, which yielded a series 
solution to the problem, was then developed.  This paper is basically 
concerned with establishing the convergence of the series solution 
obtained in [2] and hence, the acceptance of this solution as the 
actual solution of the constrained elevated water tower vibration 
problem.  Damping is neglected. 

 
pp. 157 - 160 

1.0 Introduction 
Several structures (especially tall ones) collapse as a result of poor design and/or analysis 

concepts, some causing damage to lives and properties. Hence, the design and analysis of such structures 
are of practical interest to Engineers, Applied Mathematicians and Physicists [1-4].  This paper is 
concerned with the dynamic analysis of such structures and this is normally carried out by, first, 
considering such a structure as an elastic cantilever column, which may or may not carry a concentrated 
mass at its free end and subjected to a time-dependent load [1-4].  Next a mathematical model comprising 
of the governing equation, the boundary conditions and the initial condition describing the behaviour of the 
column model is then developed. Thirdly, the initial–boundary value problem is then solved using an 
appropriate technique. Furthermore we remark that the column model may either be constrained or not. 

Gbadeyan and Titiloye [2] studied the dynamic response of an elevated water tower, which is a 
typical example of the structures under consideration.  The water tower is assumed to be elastically 
constrained using elastic tendons, and is subjected to a strong gust of wind.  The water tower is modeled as 
a column carrying a concentrated mass at its top elastically constrained at a point along its length and under 
the influence of the strong gust of wind.  Of keen interest however, is the development of the versatile 
technique used to solve the dynamical problem.  This technique involves the use of generalized integral 
transform and modified strubles method [1, 2].  A key feature of the technique, which is peculiar to the 
problem under consideration, is that its solution can be easily adjusted to handle problems having more 
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than one constraint located at any point along the length of the column.  Impressive though the work in [2] 
is, the discussion there in fails to treat an important issue likely to be encountered. In particular, the issue of 
convergence in relation to the series solution obtained is not addressed. 

The primary motivation for this presentation derives therefore from the issue which is very 
important yet un-addressed in [2].  In particular, in this presentation the convergence of the series solution 
obtained in [2] is examined.  It is shown that the series solution, which describes, at least formally, the 
dynamic deflection of a constrained un-damped elevated water tower subjected to wind gust is uniformly 
convergent.  

In the following sections, a brief discussion of the mathematical formulation of the problem and 
its solution, details of the proof of the convergence of the series solution and the conclusion are presented. 

 
2.0 The mathematical formulation and the series solution. 

The equations governing the response of the elastic column system already alluded to [2, 4] are: 
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 In (2.1) – (2.3) the following notation have been used 
( )'⋅  denotes differentiation with respect to x 

x is the spatial co-ordinate 
( )⋅  denotes differentiation  with respect to t 

t  is the time 
W(x, t ) is the deflection of the column 
K  is the springs constant 
Q(x, t) is the transverse wind load 
µ is the constant mass per unit length of the column 
γ is the weight of the tank (and its content) 
δ(.) is the Dirac–delta function 
ρ is the constant bending stiffness of the column 
l  is the length of  the system 
g is the acceleration due to gravity. 
α is the height of the constraint from the lower end of the system 

To solve the initial boundary value problem ((2.1) – (2.3)), Gbadeyan and Titiloye in [2] used the 
generalized finite integral transform and modified asymptotic technique.  This resulted in 
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Wq(x) is the kernel of the generalized integral transform, W(q ,t) is the generalized integral transform of 

( ) ,,
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== and ( )t,qQ∗  is the generalized integral transform of the transverse 

wind load.  Taking the Laplace transform of (2.4) and using equation (2.3) we obtained 
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where Q*BL(q,s) is the Laplace transform of Q*(q,t) 
The Laplace inversion of the expression (2.5) using the convolution theorem yields 

( ) ( ) ( ) ( ) ( )∑ 







∫ ∫ −=

∞

=1
0 0

q

L L

mmm

M

OR dvduvWxWu.vQutPsin
p

H
t,xW   (2.6) 

Equation (2.6) describes at least formally, the dynamic deflection of a constrained undamped elevated 
water tower subjected to wind gust Q(x, t). 
 
3.0 The convergence issue 

Equation (2.6) may not be the actual solution to the problem of obtaining the dynamic deflection 
of the constrained undamped water tower subjected to a wind gust.  As a matter of fact, one can consider it 
to be the non-formal solution only if the series solution can be shown to be uniformly convergent.  This we 
proceed to do in this section.  

 
 
 
Theorem  
Suppose the following improper integral 
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is bounded, then  the series solution (2.6) is uniformly convergent. 
Proof 
It is known that for a stable system [5, 6] such that the one under consideration, the eigen function 
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assumption, which is consistent with practical conditions viz.  The load Q(x,t) is uniformly bounded that is 
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Let attention be focused on the first series of (3.3) so that we have 
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Now, let the second series of (3.3) be considered, setting ( ) ∞=∫ ∂
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 The inequalities (3.6) and (3.7) show that the series occurring in (2.6) or (3.3) are uniformly 
convergent thus establishing that W(x, t) as given in (2.6) is the actual solution to the constrained column–
mass problem. 

 
4.0 Conclusion 
 In this paper we have discussed the dynamic problem of analysing the response of an elastic 

column carrying a concentrated mass at its top having an elastic constraint at a point along its length under 
the influence of dynamic load. It was also remarked that such a system is a modeled of an elevated water 
tower with elastic deflection control device, which is subjected to a dynamic load (such as a strong gust of 
wind). Finally we have shown that the corresponding series solution converges uniformly. 
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