Journal of the Nigerian Association of Mathematical Physics,

Volume 8 (November 2004).

Eigenvalues define conditions of stability in liquid-liquid miscible displacement

process

K.I.Idigbe* and B. H. Caudle**,
*Department. of Petroleum Engineering, University of Benin, Benin City, Nigeria.
**Department of Petroleum and Geosystems Eng., University of Texasat Austin, Austin, Tx, USA.

Abstract

A miscible displacement process is primarily governed by both
convective flow and hydrodynamic dispersion. The proper classification of
stability condition in the miscible displacement process is a major
requirement for a successful field application of this enhanced crude oil
recovery mechanism. This paper derives characteristics functions, the
eigenfunctions, which provide guidelines for achieving flow stability in
miscible displacement processes. A growth parameter, the eigenvalue, shows
the necessary and sufficient conditions for stability in the liquid-liquid
miscible displacement process. The critical velocity and wavelength
necessary for stability are defined for the miscible displacement process.
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1.0 Introduction

The considerations of stability are very importamt miscible displacement processes. The
miscible fluids such as liquid propane are usuedlyy expensive. Any premature breakup of theséeir t
displacement of in-situ oil must be avoided. Midiip at the front must be maintained at all time t
achieve the desired volumetric sweep efficiencle®][

Instability is a major factor that compromises thiscibility at front and greatly contributes teeth
low volumetric sweep efficiencies of the liquid4ig miscible displacement process in the field eesly
for the slug process [3,4].

The proper classification of the stability conalits for a miscible process is a necessary condition
for its successful implementation in the field. lewthan expected recoveries, early breakthrougtmef
displacing fluid miscible turned immiscible dispéament, are some of the problems reported in thd fie
application of the miscible displacement proces8][5

To ensure profitability and economics of the pes;aarget recoveries of in-situ oil are desired fo
any miscible displacement process. Most often,videcity of injection of the miscible fluid is alwa
greater than the critical velocity required to aefei stability, and thus, this result in less thapeeted oil
recoveries.
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Mathematically, the requirements for achievindgiity and subsequently high volumetric sweep
efficiencies are determined and presented in thewing sections.

The stable liquid-liquid miscible displacement prss for two incompressible materials, the
displacing fluid and the in-situ oil, is primarilgoverned by both convective flow and hydrodynamic
dispersion. Mathematically we have:

_pK(p-p,g5n0)
/um’x
J@DC) - D-(CUmix) = MC (12)

U.=

mix

(1.1)

Unmix, K andD are tensors.

Equation (1.1) represents a phase balance — despitase, and equation (1.2) represents
component balance, with two components — the digpdaliquid and the in-situ oil are miscible but dot
react chemically with each other or the porous mmadihrough which they flow. By virtue of the
perturbation and hydrodynamic theories, studiesevieitiated to investigate the conditions for sliahi
and the sources of stabilization of miscible disptaent processes.

In developing the solution to the investigationsmaving boundary problem in the y, z co-ordinate
system, in which the in-situ oil is displaced byni&cible material at a constant superfluous veyodit in

the positivex- direction of infinite extent, is considered. Itfigther assume that the co-ordinate axes are
oriented parallel to

the principal axes of the porous medium. Additlhnahere exists the possibility of they plane being
inclined at an anglé to the horizontal.

2.0 Mathematical derivations

For an unperturbed stable state, it is assumedathattical interface defined by tlyez surface
separates the two fluids; in-situ oil propertiesome side and the miscible liquid (solvent) projesron the
other side.

Seeking solution to equations (1.1) and (1.2), let

Unix[X%, Y,z 1] = [V, O, Q] (2.1)
CIx, v,z tfl=c [x 1] (2.2)
p=P (2.3)

wherec, [X, t], is a function, that satisfies the one-dimensidioam of equation (1.2), subject to the
appropriate boundary and initial conditions. Egu (2.1) to (2.3) define the state of this unpered
moving surface as in Figure 1.
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Figure 1. Unperturbed Moving Surface Model [1]

Now suppose a small disturbance or perturbaticemadrbitrary form is introduced into the above
unperturbed system, and then observed over thesemfrtime. The disturbances could come from the
normal variations of properties, such as permaghilithin the system. When the necessary and seiffic
conditions for instability exist, the small distarices may now grow into channels (viscous fingeis)
that result in poor volumetric sweep efficiencigs{, 8].

Let the perturbed system be represented by:

X=X+ X+ E X+ (2.4)
wherey = F[c, Uy, Uy, U,, p] and £ = the perturbation parameter; small and dimensgsnléhe first term in
equation (2.4) represents the unperturbed stabjdatiement while the reminder of the equation,esgnt
the perturbation. Consistent with equation (24, perturbed state is represented by:

Up XY, 2 1] = [V+ W, W, W] (2.5)
CpX Yy zt]=cxt]+cly zt] (2.6)
p=P+P (2.7)

W, W, W,, cand PO represent first-order perturbation effects, sidfit to characterize and define the
conditions of stability in miscible displacementopesses [1]. We define the macroscopic perturbed

velocity, W, in terms of the perturbed potentidl,as

W=-0o 2.8)

The potential and pressure are define as:

<D=5[p+£Vx—pgxsin6? (2.9)
7] K
M M :
= —¢p-—Vx+ xsing 2.10
P= K P9 (2.10)

By continuity principle, the divergence of the pebed velocity must be equal to zero. This defiaes
Laplace equation, equation (2.11), for this movimyindary problem, associated with the stabilitythaf
fluids distribution.

divW=02@ = 0 - w<x<+oo (2.11)
To solve equation (2.11), we choose a Cartesiaardimate system with impermeable side boundaries
defined by equation (2.12):

0<y<d, O<z=sw (2.12)
The normal velocity perturbation components but must vatifiese impermeable boundaries. Thus:
W, [O, z]=Wy [d ,z]=WZ[y,O]=WZ [y,w]=0 (2.13)
Equivalently, the appropriate conditions at thespdrmeable boundaries are:
—M’ay[o,z]:o; O<zs<w (2.14)
—a‘pay[d,z]=0; 0<zs<w (2.15)
-09/ [y,0=0; 0sysd (2.16)
09
Az[y,w]=0; O<y=<d (2.17)

Particular solutions to equation (2.11) can eals#yfound by using the method of ordinary differahti
equation, by applying the product method. Thuq9e10]:
@ [xy,z, t]=X(x)F (y,2) T (1) (2.18)
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where X(X), F(y, 2 and T(t) are eigenfunctions or characteristic functiong tjige the solution to the
Laplace equation (2.11)F(y, 2) is expressed as a double Fourier cosine serifiseden the intervals
given by equation (2.12),as:

F[y,z]zi fj A, cos2a ycos2 3.z (2.19)
i=1 j=1
A is integration constant, and the eidenvalwgsand (3; are given as:a :gi ;1=1,2,3A n

B, :Ej ;=1,2,3.A\ n. With the following solution foX(x) [1]:
w

X(9) = Cj exp[ 2 %] (2.20)
where G is integration constant and; vis the propagation vector in thg z plane of magnitude, and
expressingl(t) as an exponential function, we obtain the newesgion® [X, y, z, t] that satisfies equation
(13) and the boundary conditions:

DX, Y, z t] = E(cos2 a ycos2[32) exp (+ vx + nt) (2.22)
In equation (2.21), the subscripghave been dropped, akds a product of the integration constants. The
eigenvalue, n, can take negative, zero, or positalees. The simple exponential function has thoperty
of rapid growth for positive values of n and rapieative values af. To ensure uniform flow far from
the moving interface, we require that tkeomponent of the perturbed velocity vanishxat + oo,
respectively. At the perturbed interface both kiatic and hydrodynamic conditions must be satisfies
Defining and separating the macroscopic perturbéal it unperturbed stable component and the urestabl
one with first-order effects [8, 12], and satisfyikinematic conditions at the interface, we dekogation
(2.22):

/7[cp,y,z,t1=% E (cos2a ycosZﬁz)exp[nt] (2.22)

To apply the hydrodynamic condition at the pertdrlieterface, the equation of continuity for the
displacing miscible fluid (the solvent) as defingdequation (1.2) is invoked. The perturbed forfnhés
equation is:

oc
(@D e, ) =0, W, )=o( "~ /3 ) (2:23)
wherec, = the perturbed solvent concentratibrs the effective dispersion tenol/()
o 60% )+W,,.Oc, =0(gDOc, ) (2.24)

The assumption of incompressible fluids furtherues equation (2.23) to the left hand side of the
equation (2.24) defines the so-called substantimee tderivative following the motion of fluid.
Equivalently, equation (2.24) can be written inmerof the first-order perturbed interfagg, where it is
linear function of the perturbed solvent concertratg, as shown in equation (2.25).

g—,t]—D(goD On)=0 (2.25)
Equation (2.25) has the units of velocity. Thstfterm describes a displacement velocity attamedny
moving iso-concentration surface following the roatiof fluid under the action of a unit dispersivece
[11, 12]. With the assumption of constant dispersioefficients which considering a particular \odip
equation (2.25) further reduces to U, =¢D,0% [cp , y,z,t] =0 (2.26)
Equation (2.26) allows for the subsequent spreadihghe interface due to the effects of molecular
diffusion and convective dispersion [13]. Due he teffects of the molecular diffusion and convestiv
dispersion, a transition zone is created betweervl miscible liquids—the pure oil and the purtvet.
By solving equation (2.26) with the expression fpfrom equation (2.22), results are obtained for the
investigations.
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3.0 Results

In the transition zone, one permeability, the alisolpermeability will exit. Writing the
appropriate terms for the pressures and potentiailiand solvent zones, equation (2.22), defires t
eigenvaluen, the growth or decay parameter [1].

_VIL3~(p,~p,)gsing-4M V']

» (3.1)

where
L3=V(y, -1 )/K (3.2)
La=(p, -1, )/K (3.3)

The least stable term of the decomposed Fouriepoaents will have the highest growth rate, yetitab
requires that no growth occur [7, 8, 11, 12]. Thisans that the growth or stability parameter, the
eigenvaluen, must be zero or negative. The necessary anitisutf condition for growth or instability is
that n, the growth parameter, be positive. Thi$ alWays be satisfied whenever [1]:

(4, =,V =(o, - p.)gsin®

> 4M v° 3.4
K s (3.4)

— ¢Dt/'1m'>< Lc .

M, ;
K

(3.5)

L. =Length of the transition or mixing zone for abd¢éadisplacement. The first and second terms en th
left side of the equation (3.4), give the effecttloé viscous and gravity forces. A critical velgciV,, is
defined as that at which there is a balance betwseniscous and gravity forces. Negating theokftd
mixing, this can be define from equation (3.4), as:

K(p, - p.)gsing
Hy = H
Equation (3.6) is the well-known expression in theustry [14] for critical velocity for an initiafl sharp
liquid-liquid interface in a homogenous porous medi Subtracting equation (3.6) from equation (3.4)
and putting the expression for v, the propagatiectar, one obtains
_ _ : 2 H 2
28| A RO (L O Lo @7
K d? w?

Rearranging equation (3.7), putting the expresfiorMs, and definingH,, the heterogeneity factor, the
A AL
#m’watHeLc (l ZWZ + jzdz)
As always, the least stable term will determinedhset of instability, and this will occur at thénimum

values

V. = (3.6)

following condition for instability, is obtained >4 (3.8)

of the eigenvaluey, the propagation vector, bt j = 1. From equation (3.8), satisfied simultanepuie
necessary and sufficient conditions for instabiitg given by equation (3.9) to (3.11):

M, >y, or ,u% >1 (3.9
V>V, (3.10)
A>A (3.11)
0B
where A =4m PO H A L (3.12)
(, - u)v-V.)
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The critical wavelength is defined by equation 23, derived from equation (3.4), with= 2rtA, defining
the wavelengths of the individual Fourier composent

4.0 Discussion

From the investigations, it is seen that the camakt of stability in liquid-liquid miscible
displacement processes are defined by eigenvalies.expression on the left hand side equation (3.8)
must be equal to or less thar?4or stability. There are two types of hydrodynarstability in miscible
displacements, namely [1, 3, 4]: unconditional gitghand conditional stability. When the expriegson
the left side of equation (3.1) is separated irddous distinct dimensionless scaling groups asvehia
equation (4.1), the forces that affect the perforoea of miscible displacement processes are cleady.
This is discussed extensively in Refs. [1] and [4].

Ns =Ny [1 - Ng] NoNgN¢ (4.1)

Ns = the expression on the left hand side of equaf®B). It is then seen that the stability of a
displacement in a given system (model or field)désermined by the interplay of forces such as tiat
behavior might change with different displacement aystem parameters.

5.0 Conclusion
In this paper, by virtue of the perturbation andrwglynamic theories, investigations have shown:

i. The necessary and sufficient conditions for th&ikta of miscible displacement processes,
which must be satisfied simultaneously,

ii. Unconditional stability, where the scaling numbdy, must be less that

iii. Neutral stability, wherd\s will be equal to 47, and

iv. The major forces that manifest the phenomena tffattathe performances of miscible
displacement processes.

Nomenclature

d = Width of Rectangular Systet) (

w = Height of Rectangular system (

D= Effective Transverse Dispersion Coefficieltt)
He= Heterogeneity Factor (dimensionless)

L.= Length of Transition Zond)(

M = Mobility Ratio

V = Superfluous Injection Velocity/f)

V. = Critical injection Velocity Kt)

o= Viscosity of the Crude Oil (MHt)

Ls=Viscosity of the Solvent (NHt)

Lmix= Fluid Viscosity in the Transition Zone (M)
0= [0 (I-S+S) (Fraction)

[J,= Effective porosity (fraction)

Sy= Initial Water Saturation (fraction)

S =Initial Gas Saturation (fraction)

K = the absolute permeability tenst (

Unix = average flux (velocity) of mixture in the tramsit zone /t)
C = solvent volumetric concentration (dimensionjess
t =time ()

P = pressure
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