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Abstract 
 
 

 A miscible displacement process is primarily governed by both 
convective flow and hydrodynamic dispersion.  The proper classification of 
stability condition in the miscible displacement process is a major 
requirement for a successful field application of this enhanced crude oil 
recovery mechanism.  This paper derives characteristics functions, the 
eigenfunctions, which provide guidelines for achieving flow stability in 
miscible displacement processes.  A growth parameter, the eigenvalue, shows 
the necessary and sufficient conditions for stability in the liquid-liquid 
miscible displacement process.  The critical velocity and wavelength 
necessary for stability are defined for the miscible displacement process. 
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1.0 Introduction 
The considerations of stability are very important in miscible displacement processes. The 

miscible fluids such as liquid propane are usually very expensive. Any premature breakup of these in their 
displacement of in-situ oil must be avoided. Miscibility at the front must be maintained at all time to 
achieve the desired volumetric sweep efficiencies [1,2].  
 Instability is a major factor that compromises the miscibility at front and greatly contributes to the 
low volumetric sweep efficiencies of the liquid-liquid miscible displacement process in the field, especially 
for the slug process [3,4]. 
 The proper classification of the stability conditions for a miscible process is a necessary condition 
for its successful implementation in the field. Lower than expected recoveries, early breakthrough of the 
displacing fluid miscible turned immiscible displacement, are some of the problems reported in the field 
application of the miscible displacement process [5,6]. 
 To ensure profitability and economics of the process, target recoveries of in-situ oil are desired for 
any miscible displacement process. Most often, the velocity of injection of the miscible fluid is always 
greater than the critical velocity required to achieve stability, and thus, this result in less than expected oil 
recoveries. 
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 Mathematically, the requirements for achieving stability and subsequently high volumetric sweep 
efficiencies are determined and presented in the following sections.  

The stable liquid-liquid miscible displacement process for two incompressible materials, the 
displacing fluid and the in-situ oil, is primarily governed by both convective flow and hydrodynamic 
dispersion. Mathematically we have: 

mix

mix

mix

)singp(K
U

µ
θρ−

∇−=    (1.1) 

∇(.φD∇c) - ∇.(cUmix) = φ∇tc   (1.2)  
Umix, K and D are tensors. 
 Equation (1.1) represents a phase balance – a single phase, and equation (1.2) represents 
component balance, with two components – the displacing liquid and the in-situ oil are miscible but do not 
react chemically with each other or the porous medium through which they flow.  By virtue of the 
perturbation and hydrodynamic theories, studies were initiated to investigate the conditions for stability, 
and the sources of stabilization of miscible displacement processes. 
In developing the solution to the investigations, a moving boundary problem in the x, y, z co-ordinate 
system, in which the in-situ oil is displaced by a miscible material at a constant superfluous velocity, V, in 
the positive x- direction of infinite extent, is considered. It is further assume that the co-ordinate axes are 
oriented parallel to  
 

 

the principal axes of the porous medium.  Additionally, there exists the possibility of the x-y plane being 
inclined at an angle θ  to the horizontal. 
 
2.0 Mathematical derivations 

For an unperturbed stable state, it is assumed that a vertical interface defined by the y-z surface 
separates the two fluids; in-situ oil properties on one side and the miscible liquid (solvent) properties on the 
other side. 
 Seeking solution to equations (1.1) and (1.2), let: 

Umix [x, y, z, t] = [V, O, O]     (2.1) 
C[x, y, z, t] = cu [x, t]    (2.2) 
p  = P       (2.3)  

where cu [x, t], is a function, that satisfies the one-dimensional form of equation (1.2), subject to the 
appropriate boundary and initial conditions.  Equations (2.1) to (2.3) define the state of this unperturbed 
moving surface as in Figure 1. 

   X 
 
 

 
 
 
 
 
 
 
 
 
 
 
   Z 
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Figure 1: Unperturbed Moving Surface Model [1] 
 Now suppose a small disturbance or perturbation of an arbitrary form is introduced into the above 
unperturbed system, and then observed over the course of time. The disturbances could come from the 
normal variations of properties, such as permeability within the system. When the necessary and sufficient 
conditions for instability exist, the small disturbances may now grow into channels (viscous fingers, etc.) 
that result in poor volumetric sweep efficiencies [1, 7, 8]. 
 Let the perturbed system be represented by: 

χ =χ0 + ε1χ1 + ε2 χ2 +…   (2.4) 
where χ = F[c, Ux, Uy, Uz, p] and ε = the perturbation parameter; small and dimensionless.  The first term in 
equation (2.4) represents the unperturbed stable displacement while the reminder of the equation, represent 
the perturbation. Consistent with equation (2.4), the perturbed state is represented by:  

Up [x, y, z, t] = [V + Wx, Wy, Wz]     (2.5) 
c p  [x, y, z, t] = cu[x, t] + c∗[y, z, t]     (2.6) 

p = P + P      (2.7) 
Wx, Wy, Wz, c∗ and P∗ represent first-order perturbation effects, sufficient to characterize and define the 
conditions of stability in miscible displacement processes [1].  We define the macroscopic perturbed 
velocity, W, in terms of the perturbed potential, Φ as: 

Φ∇−=W
ρ

    (2.8) 

The potential and pressure are define as:  

Φ = 







−+ θρµ

µ
sinxgVx

K
p

K
    (2.9) 

 
 
 

p = θρµΦµ
sinxgVx

KK
+−     (2.10) 

By continuity principle, the divergence of the perturbed velocity must be equal to zero.  This defines a 
Laplace equation, equation (2.11), for this moving boundary problem, associated with the stability of the 
fluids distribution. 

-div ∞+<<∞−=∇= xW 02 Φ
ρ

   (2.11) 

To solve equation (2.11), we choose a Cartesian co-ordinate system with impermeable side boundaries 
defined by equation (2.12): 

wz,dy ≤≤≤≤ 00     (2.12) 

The normal velocity perturbation components but must vanish at these impermeable boundaries.  Thus: 
[ ] [ ] [ ] [ ] 000 ==== w,yW,yWz,dWz,W zzyy     (2.13) 

Equivalently, the appropriate conditions at these impermeable boundaries are: 

[ ] wz;z,y ≤≤=∂
∂− 000Φ     (2.14) 

[ ] wz;z,dy ≤≤=∂
∂− 00Φ    (2.15) 

[ ] dy;,yz ≤≤=∂
∂− 000Φ    (2.16)  

[ ] dy;w,yz ≤≤=∂
∂− 00
Φ     (2.17) 

Particular solutions to equation (2.11) can easily be found by using the method of ordinary differential 
equation, by applying the product method.  Thus, let [9, 10]: 

[ ] ( ) ( ) ( )tTz,yFxXt,z,y,x =Φ    (2.18) 
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where X(x), F(y, z) and T(t) are eigenfunctions or characteristic functions that give the solution to the 
Laplace equation (2.11).  F(y, z) is expressed as a double Fourier cosine series, defined in the intervals 
given by equation (2.12),as: 

[ ] ∑ ∑=
∞

=

∞

=1 1
22

i j
jiij zcosycosAz,yF βα   (2.19) 

Aij is integration constant, and the eidenvalues αi and βj are given as: n,,i;i
di Λ321== πα  

n.,,;j
wj Λ321== πβ .  With the following solution for X(x) [1]: 

X(x) = Cij exp[±vij x]    (2.20) 
where Cij is integration constant and vij  is the propagation vector in the y, z plane of magnitude, and 
expressing T(t) as an exponential function, we obtain the new expression Φ [x, y, z, t] that satisfies equation 
(13) and the boundary conditions: 

Φ[x, y, z, t] = E(cos2 α ycos2β z) exp (± vx + nt)  (2.21) 
In equation (2.21), the subscripts ij have been dropped, and E is a product of the integration constants.  The 
eigenvalue, n, can take negative, zero, or positive values. The simple exponential function has the property 
of rapid growth for positive values of n and rapid negative values of n.  To ensure uniform flow far from 
the moving interface, we require that the x-component of the perturbed velocity vanish at x = ± ∞, 
respectively.  At the perturbed interface both kinematic and hydrodynamic conditions must be satisfies.  
Defining and separating the macroscopic perturbed into it unperturbed stable component and the unstable 
one with first-order effects [8, 12], and satisfying kinematic conditions at the interface, we define equation 
(2.22): 

[ ] [ ]ntexp)zcosy(cos
n

v
t,z,y,c op βαΕη 22=    (2.22) 

To apply the hydrodynamic condition at the perturbed interface, the equation of continuity for the 
displacing miscible fluid (the solvent) as defined by equation (1.2) is invoked.  The perturbed form of this 
equation is: 

)t
c

()Wc()cD( p
mixpp ∂

∂=∇−∇∇ φφ    (2.23) 

where cp = the perturbed solvent concentration, D = the effective dispersion tenor, (l2/t) 
 
  (2.24) 
 

 
 
The assumption of incompressible fluids further reduces equation (2.23) to the left hand side of the 
equation (2.24) defines the so-called substantive time derivative following the motion of fluid.  
Equivalently, equation (2.24) can be written in terms of the first-order perturbed interface, η, where it is 
linear function of the perturbed solvent concentration, cp as shown in equation (2.25). 

0=∇∇−
∂
∂

)D(
t

ηφη
   (2.25) 

Equation (2.25) has the units of velocity.  The first term describes a displacement velocity attained by any 
moving iso-concentration surface following the motion of fluid under the action of a unit dispersive force 
[11, 12].  With the assumption of constant dispersion coefficients which considering a particular velocity, 
equation (2.25) further reduces to  [ ] 02 =∇= t,z,y,cDU ptD ηφ    (2.26) 

Equation (2.26) allows for the subsequent spreading of the interface due to the effects of molecular 
diffusion and convective dispersion [13].  Due to the effects of the molecular diffusion and convective 
dispersion, a transition zone is created between the two miscible liquids–the pure oil and the pure solvent. 
By solving equation (2.26) with the expression for η from equation (2.22), results are obtained for the 
investigations. 
 

)cD(c.W)t
c

( ppmix
p ∇∇=∇+∂

∂ φφ
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3.0 Results 
In the transition zone, one permeability, the absolute permeability will exit.  Writing the 

appropriate terms for the pressures and potential in oil and solvent zones, equation (2.22), defines the 
eigenvalue n, the growth or decay parameter [1]. 

4

43 2

L

]vMsing)(L[v
n sso −−−

=
θρρ

    (3.1) 

where 
K)(VL so µµ −=3     (3.2) 

K)(L so µµ −=4     (3.3) 

The least stable term of the decomposed Fourier components will have the highest growth rate, yet stability 
requires that no growth occur [7, 8, 11, 12]. This means that the growth or stability parameter, the 
eigenvalue, n, must be zero or negative.  The necessary and sufficient condition for growth or instability is 
that n, the growth parameter, be positive. This will always be satisfied whenever [1]: 

( ) ( ) 24 vM
K

singV
s

soso >
−−− θρρµµ

   (3.4) 

;
K

LD
M cmixt

s

µφ
=     (3.5) 

 Lc =Length of the transition or mixing zone for a stable displacement.  The first and second terms on the 
left side of the equation (3.4), give the effect of the viscous and gravity forces. A critical velocity, Vc, is 
defined as that at which there is a balance between the viscous and gravity forces.  Negating the effect of 
mixing, this can be define from equation (3.4), as: 

( )
so

so

c

singK
V

µµ
θρρ

−
−

=     (3.6) 

Equation (3.6) is the well-known expression in the Industry [14] for critical velocity for an initially sharp 
liquid-liquid interface in a homogenous porous medium.  Subtracting equation (3.6) from equation (3.4), 
and putting the expression for v, the propagation vector, one obtains 

( )( )
]

w

)j(

d

)i(
[M

K

VV
s

cso

2

2

2

2

4
ππµµ

+>
−−

   (3.7) 

Rearranging equation (3.7), putting the expression for Ms, and defining He, the heterogeneity factor, the 

following condition for instability, is obtained       
( )( )

( )
2

2222

22

4π
φµ

µµ
>

+
−−

djwiLHD

wdVV

cetmix

cso  (3.8) 

As always, the least stable term will determine the onset of instability, and this will occur at the minimum 
values  
 
 
 
of the eigenvalue, v, the propagation vector, at i = j = 1.  From equation (3.8), satisfied simultaneously, the 
necessary and sufficient conditions for instability are given by equation (3.9) to (3.11): 

1>>
s

o
so or µ

µµµ    (3.9) 

cVV >       (3.10) 

.cλλ >       (3.11) 
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The critical wavelength is defined by equation (3.12), derived from equation (3.4), with λ = 2π ⁄v, defining 
the wavelengths of the individual Fourier components. 
 

4.0 Discussion 
From the investigations, it is seen that the conditions of stability in liquid-liquid miscible 

displacement processes are defined by eigenvalues. The expression on the left hand side equation (3.8) 
must be equal to or less than 4π2 for stability. There are two types of hydrodynamic stability in miscible 
displacements, namely [1, 3, 4]: unconditional stability, and conditional stability.  When the expression on 
the left side of equation (3.1) is separated into various distinct dimensionless scaling groups as shown in 
equation (4.1), the forces that affect the performances of miscible displacement processes are clearly seen. 
This is discussed extensively in Refs. [1] and [4]. 

Ns = Nv [1 - Ng]NpNdNf     (4.1)  
Ns = the expression on the left hand side of equation (3.8).  It is then seen that the stability of a 
displacement in a given system (model or field), is determined by the interplay of forces such as that the 
behavior might change with different displacement and system parameters. 
 

5.0 Conclusion 
In this paper, by virtue of the perturbation and hydrodynamic theories, investigations have shown: 

i. The necessary and sufficient conditions for the stability of miscible displacement processes, 
which must be satisfied simultaneously, 

ii.  Unconditional stability, where the scaling number, Ns, must be less that  
iii.  Neutral stability, where Ns, will be equal to 4π2, and 
iv. The major forces that manifest the phenomena that affect the performances of miscible 

displacement processes.   
 

Nomenclature  
d = Width of Rectangular System (l) 
w = Height of Rectangular system (l) 
Dt= Effective Transverse Dispersion Coefficient (l2/t) 
He= Heterogeneity Factor (dimensionless) 
Lc = Length of Transition Zone (l) 
M = Mobility Ratio 
V = Superfluous Injection Velocity (l/t) 
Vc = Critical injection Velocity (l/t) 
µ0 = Viscosity of the Crude Oil (M/l-t) 
µs =Viscosity of the Solvent (M/l-t) 
µmix= Fluid Viscosity in the Transition Zone (M/l-t) 
∅ = ∅t (l-Sw-Sg) (Fraction) 
∅t = Effective porosity (fraction) 
Sw = Initial Water Saturation (fraction) 
Sg =Initial Gas Saturation (fraction) 
K = the absolute permeability tensor (l2) 
Umix = average flux (velocity) of mixture in the transition zone (l/t)  
C  = solvent volumetric concentration (dimensionless) 
t = time (t) 
P = pressure 
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