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Abstract 
 

The Galerkin-based finite element method has been used to 
successfully simulate the propagation of instabilities in the liquid-liquid 
miscible displacement process.  The convective-dispersion equation is 
sufficient to model the liquid-liquid miscible displacement process under 
unstable conditions. The investigations reveal: 

i. An unconditional instability which will not disappear with time, 
ii. The rate of growth of the instabilities, tended to increased proportionally to a 

number to the M power, where M is the mobility ratio, 
iii. The propagation of instabilities can be achieved through the actions of viscous, 

gravity and heterogeneous forces, and  
iv. Heterogeneity in permeability introduces a macroscopic dispersion effect that 

attempts to stabilize the instabilities. 
 

pp 173 - 176 

1.0 Introduction  
The liquid-liquid miscible displacement process is primarily governed by the convective-

dispersion equations (1.1) and (1.2), which are non-linear. 

0=∇−≡− mixmix U.Udiv
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   (1.1) 
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Equation (1.2) describes the dimensionless volume concentration profile of the displacing miscible liquid, 
the solvent, at any point at any time. The first term of this equation represents the mixing phenomenon 
between the two fluids-solvent and oil, while the second term arises from the mass transport by convection. 
The term on the right accounts for the unsteady-state accumulation.  

The effective dispersion term, D
ϖ

, is velocity dependent, while the mass average velocity, Umix, 
depends on the solvent concentration through the mixture density and viscosity.  Thus, equations (1.1) and 
(1.2) form a set of coupled, non-linear partial differential equations, sometimes referred to as phase and 
component balance equations [1]. 

The non-linearity of the set of partial differential equations precludes their analytical or exact 
closed-form solutions and hence, the necessity of approximate solutions.  

In reservoir simulation studies, the finite difference and the finite element methods are the basic numerical 
techniques used to solve the non-linear partial differential equations [2, 3, 4, 5, 6]. In the present work, the finite 
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element method was used to solve the non-linear partial differential equations that govern the miscible displacement 
process.  
 Studies were initiated to investigate the following: 

(i) The appropriateness of the set of non-linear partial differential equations to properly 
characterize the liquid-liquid miscible displacement process, and 

(ii)  The modeling of instabilities in the liquid-liquid miscible displacement process by the 
Galerkin based finite element method. 

 

2.0 Formulation  
To solve equations (1.1) and (1.2), we seek displacement in an x, y, z coordinate system, with flow 

in the positive x-direction.  The miscible fluid enters the system at the face, x = 0, and leaves at the other 
face, x = L.  The side boundaries are impermeable to flow defined by the conditions (flux-type) as: 
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Equivalently, equations (2.1) to (2.6) can be redefined in terms of the phase pressure, P. Φ  is the flow 
potential 

We can represent the system by a plane as shown in Figure 1. At the inlet boundary, the miscible 
fluid, the solvent, is introduced at a constant rate. At this boundary, the conditions that satisfy equations 

(1.1) and (1.2) are:   0=+
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 (2.9)  
where qs = a prescribed solvent flux, nx = the direction cosine of the outward normal. 

c [x, y, t] = co; t > 0, 0 ≤ y ≤ d   (2.10) 
= 1 

for pure solvent injection.  At the outlet boundary, x = L, the conditions are: 
P[x, y, t] = 0; t > 0, 0 ≤ y ≤ d   (2.11) 
c[x, y, t] = 0; t > 0, 0 ≤ y ≤ d    (2.12) 
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            0   x  L 
 

Figure 1: A Model Plane of System 
 

Let v and q be any admissible trial and test functions [7, 8, 9]. Since approximate solutions are 
sought to equations (1.1) and (1.2), a residual or error is defined for each equation as: 

r1 = F1 [v1 = P*]     (2.13) 
r2 = F2 [v2 = c*]      (2.14) 

where F1 and F2 are differential operators, and P* and c* represent the approximate solutions to equations 
(1.1) and (1.2).  The objective is the minimization of the errors involved in satisfying equations (1.1) and 
(1.2) by the approximate solutions, in a global manner.  If the trial functions were the exact solutions, the 
residuals, r1 and r2, will vanish.  We define weighted residual conditions for the equations as: 

∫ =
A

dAqr 011      (2.15) 

∫ =
A

dAqr 022      (2.16) 

for sufficiently smooth test or weight functions, q1 and q2, and the integration are taken over the area A of 
the continuum. 

Introducing the expressions for Umix in the respective x and y dimensions into equation (2.15), we 
obtain a second-order partial differential equation in pressure: 
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Equation (2.17) reveals a lack of symmetry in the formulation – the same order of derivatives of the trial 
and test functions does not exist. We desire a symmetric formulation – the same order of trial and test 
functions. For example, this is achieved as follows: 
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Applying the Green-Gauss theorem to the first integral on the right side of equation (2.20) yields 
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When the expression on the right side of equation (2.21) is substituted for its equivalent term in equation 
(2.20), a symmetric formulation of the problem is obtained.  Also, the expression on the right side of 
equation (2.21) defines the condition at the boundaries, y = 0 and y = d.  These boundaries are 
impermeable, thus, equation (2.21) will vanish at these boundaries.  The flux-type boundary condition is a 
natural consequence of the symmetric weighted residual formulation of the problem. Similarly for the x-
contribution: 
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The first term on the left side of equation (2.22) defines the condition at the boundaries, x = 0 and x = L. 
The second term on the right side of equation (2.20) and that on the left side of equation (2.22), give the 
contributions to the stiffness matrix. 
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In deriving the above equations, the trial and test functions are assumed to be admissible 
functions. They belong to a class of admissible functions for the problem [1]. This class has two properties.  
First, it is a linear space of functions, and second, it is infinite dimensional. 
However, instead of tackling the infinite-dimensional problem, approximate solutions in a finite-
dimensional space, are sought in the following form: 

)y,x()t(PPPv
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i
iN ∑=≡∗=
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1 φ      (2.23) 
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where the functions, φ (x, y) are called basis functions. The Galerkin weighted residual method is defined 
when the test functions are chosen identical to the basis functions. 

While the Galerkin method provides an elegant strategy for constructing the approximate solutions 
to equations (1.1) and (1.2), it does not provide a systematic way of constructing reasonable basis 
functions, φ (x, y). 

This difficulty is overcome by using the finite element method, which permits a general and 
systematic technique for constructing the basis functions for the Galerkin method. 
 

3.0 Computational Aspects 
The choice of the basis or shape functions and their degree is made after the discretization of the 

solution domain into finite elements.  In the present study, C0 quadrilateral finite elements were used for the 
discretization process. The 9-node Lagrangian finite elements were used in the simulation studies. 

Settari et al. in [4] encountered difficulties with the 8-node serendipity elements in their solution 
of miscible problems. The 9-node Lagrangian finite elements have not been seriously tested in reservoir 
simulation studies, hence the decision to use them in the present work. All the simulation studies were 
performed with the 9-node bi-quadratic Lagrangian elements [1]. 

For the discretization of time, a fully implicit scheme was used to avoid any non-physical 
oscillations. A Fortran IV source program was written to do all computations. The source program consists 
of a main program and 16 subprograms. 
 
 
 
4.0 Result 

To model the propagation of any instability that may result in a liquid-liquid miscible 
displacement process, numerical simulation is required. 

Figures (2) to (4) show the results of the numerical simulation studies that were performed using 
the Galerkin-based 9-node bi-quadratic Lagrangian finite elements.  All instabilities were initiated at the 
inlet face, x = 0 by the condition of equation (2.10). 
 

5.0 Discussions 
From the results of the investigation, it is apparent that equations (1.1) and (1.2) are sufficient to 

model the liquid-liquid miscible displacement process under unstable conditions.  Reference [1] through 
inspectional analysis, showed that some of the factors that characterize instabilities are implicitly imbedded 
in the equations. 

Figure 2 shows an unconditional instability, which will not disappear with time.  Perrine [11] 
reported that the only instability observed is conditional instability – one that will disappear after a 
sufficiently long time. Our investigations agree with the experimental findings of Habermann [12].  The 
value of Ns (NS = 590.63 [1,10] greater than 4π2, demonstrates that the displacement will be 
unconditionally unstable. 

When compared to Figure 3, Figure 2 shows that the rate of the growth of any instability tends to 
increase proportionally to a number of the M power, where M is the mobility ratio.  At the injection of 0.5 
PV, the instabilities had reached the outer boundary x = L, for M = 20. 
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Warren et al. in [13] and Perrine et al. in [14] noted that the effect of macroscopic dispersion in 
miscible displacement processes is to dampen the displacement fronts.  Figures 4 shows the results of the 
simulation of initiated instabilities in a system with randomly placed permeabilities.  By 0.5PV, the front 
had still not reached the outer boundary.  The induced macroscopic dispersion by the presence of 
heterogeneity in permeability tended to dampen the instabilities. However, the instabilities were still 
propagated, but not as severe as that shown in Figures 2 and 3 for a homogeneous system. 

 

6.0 Conclusions  
The Galerkin-based 9-node bi-quadratic Lagrangian finite elements were used to successfully 

simulate the propagation of instabilities in liquid-liquid miscible displacement processes. 
The investigations reveal; 

i. An unconditional instability which will not disappear with time, 
ii.  The rate of growth of the instabilities, tended to increase proportionally to a number to the M 

power, where M is the mobility ration 
iii.  The propagation of instabilities can be achieved through the actions of viscous, gravity and 

heterogeneous forces, 
iv. Heterogeneity in permeability introduces a macroscopic dispersion effect that attempts to 

stabilize the instabilities, and 
Also the investigations show that the convective-dispersion equation is suitable to model unstable liquid-
liquid miscible displacement processes. 
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