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Abstract

The Galerkin-based finite element method has been used to
successfully ssimulate the propagation of instabilities in the liquid-liquid
miscible displacement process. The convective-dispersion equation is
sufficient to model the liquid-liquid miscible displacement process under
unstable conditions. The investigations reveal:

i.  Anunconditional instability which will not disappear with time,

ii. The rate of growth of the instabilities, tended to increased proportionally to a
number to the M power, where M isthe mobility ratio,

iii. The propagation of instahilities can be achieved through the actions of viscous,
gravity and heterogeneous forces, and

iv. Heterogeneity in permeability introduces a macroscopic dispersion effect that
attempts to stabilize the instabilities.

pp 173 - 176

1.0 Introduction
The liquid-liquid miscible displacement process gamarily governed by the convective-
dispersion equations (1.1) and (1.2), which arel'mmar

—d|vU = - DU (1.2)

Db oc-0. cU (6/) (1.2)

Equation (1.2) describes the dimensionless voluomeentration profile of the displacing miscibleuid,
the solvent, at any point at any time. The firstrteof this equation represents the mixing phenomeno
between the two fluids-solvent and oil, while tlee@nd term arises from the mass transport by cdiovec
The term on the right accounts for the\Hnsteady&stecumuIation.

The effective dispersion ternD) , is velocity dependent, while the mass averagecitgl U,
depends on the solvent concentration through thxéurai density and viscosity. Thus, equations (arig
(1.2) form a set of coupled, non-linear partiafeti€ntial equations, sometimes referred to as phade
component balance equations [1].

The non-linearity of the set of partial differemtiquations precludes their analytical or exact
closed-form solutions and hence, the necessitppfaximate solutions.

In reservoir simulation studies, the finite diffece and the finite element methods are the basiterioal
techniques used to solve the non-linear partidedihtial equations [2, 3, 4, 5, 6]. In the presenotk, the finite
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element method was used to solve the non-linediapdifferential equations that govern the miseillisplacement
process.
Studies were initiated to investigate the follogvin

0] The appropriateness of the set of non-linear paditferential equations to properly
characterize the liquid-liquid miscible displacernprocess, and
(i) The modeling of instabilities in the liquid-liquiciscible displacement process by the

Galerkin based finite element method.

2.0 Formulation

To solve equations (1.1) and (1.2), we seek digpient in arx, y, z coordinate system, with flow
in the positive x-direction. The miscible fluidters the system at the facer 0, and leaves at the other
face,x =L. The side boundaries are impermeable to flowneefiby the conditions (flux-type) as:

'a%y [0.]=0; 0szsw 2.1)
-a‘%y [d.7]=0; o0<zsw (2.2)
-6¢az[y,o]=o; O<ys<d (2.3)
-a%z[y,w]:o; 0<z<d (.2.4)
-g—;[o,z]=0; 0<zsw (2.5)
-g—;[d,z]=0; 0<zsw (2.6)
-%[y,0]=0; O0<y<d (2.7)
-g—;[y,w]=0; O0<y<d (2.8)

Equivalently, equations (2.1) to (2.6) can be redefinecims of the phase pressure, ®. is the flow
potential

We can represent the system by a plane as shown in Figurdhk istet boundary, the miscible
fluid, the solvent, is introduced at a constant rate. &t bloundary, the conditions that satisfy equations

(1.1) and (1.2) are: K, [a—p—pgsine}nx +qg, =0
H | OX
(2.9)

whereqs = a prescribed solvent flur, = the direction cosine of the outward normal.
clxy,f]=c,;t>0,0<y<d (2.10)

for pure solvent injection. At the outlet boundaty; L, the conditions are:
P[x,y,f]=0;t>0,0<y<d (2.11)
c[x y,1]=0;t>0,0<sy<d (2.12)
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Figure 1: A Model Plane of System

Let v andq be any admissible trial and test functions [7, 8, 9]. Sagroximate solutions are

sought to equations (1.1) and (1.2), a residual or exaefined for each equation: as

rh=Fs [Vl = P*] (213)

r,=F, [Vz = C*] (214)
whereF; andF, are differential operators, a4 and c* represent the approximate solutions to equations
(1.1) and (1.2). The objective is the minimization of thersrinvolved in satisfying equations (1.1) and
(1.2) by the approximate solutions, in a global mannethdftrial functions were the exact solutions, the
residualsy; andr,, will vanish. We define weighted residual conditionstf@ equations as:

[r,0,dA=0 (2.19)
(r,q,dA=0 (2.16)

for sufficiently smooth test or weight functiorgg,andq,, and the integration are taken over the @ ed
the continuum.

Introducing the expressions fok,, in the respective andy dimensions into equation (2.15), we
obtain a second-order partial differential equatiopressure:

fg, (x +y.)dA=0 (2.17)
where
x0=2 | ~000633"x [9P _ pOSNE (2.18)
0x ,u ax 144g,
K
yO=— 9 | _oo0633~r 9P (2.19)
0X U 0y

Equation (2.17) reveals a lack of symmetry in theriulation — the same order of derivatives of tied t
and test functions does not exist. We desire a stnnformulation — the same order of trial andt tes
functions. For example, this is achieved as foltows

K K
[a, y. dA= ji .00633—~ a_qu + [| —0.00633—~ 9P 99, |4a (2.20)
A gy U oy A H 0y dy

Applying the Green-Gauss theorem to the first irdegn the right side of equation (2.20) yields

K K
ji -0.00633—~ a—Pq dA = [|-0.00633— ainy q,dS (2.21)
A0y U oy S2 U oy

When the expression on the right side of equatioBl| is substituted for its equivalent term in &iipn
(2.20), a symmetric formulation of the problem istained. Also, the expression on the right side of
equation (2.21) defines the condition at the botieday = 0 andy = d. These boundaries are
impermeable, thus, equation (2.21) will vanishhaise boundaries. The flux-type boundary conditon
natural consequence of the symmetric weighted wasibrmulation of the problem. Similarly for the x
contribution:
j{ 0.00633-x (a—P pggng} }qlds+j000633—ap LA

U M OX OX

5 dx 144y, 2.22)

_j000633—pgs'”9aq1 dA
M 144y, 0Xx

The first term on the left side of equation (2.22fines the condition at the boundaries; 0 andx = L
The second term on the right side of equation (2a2@ that on the left side of equation (2.22)edive
contributions to the stiffness matrix.
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In deriving the above equations, the trial and tesictions are assumed to be admissible
functions. They belong to a class of admissiblefiams for the problem [1]. This class has two jamies.
First, it is a linear space of functions, and segainis infinite dimensional.

However, instead of tackling the infinite-dimensabnproblem, approximate solutions in a finite-
dimensional space, are sought in the following form

v, =PO=PR, = 3P (1)@(x,y) (2.23)
v, =c=C, :ijci (De(xy) (2.24)

where the functionsp (x, y) are called basis functions. The Galerkirighted residual method is defined
when the test functions are chosen identical td#®és functions.

While the Galerkin method provides an elegant atyafor constructing the approximate solutions
to equations (1.1) and (1.2), it does not provideyatematic way of constructing reasonable basis
functions,@(x, y).

This difficulty is overcome by using the finite slent method, which permits a general and
systematic technique for constructing the basistfans for the Galerkin method.

3.0 Computational Aspects

The choice of the basis or shape functions and tegjree is made after the discretization of the
solution domain into finite elements. In the presstudy,C° quadrilateral finite elements were used for the
discretization process. The 9-node Lagrangiangfieiements were used in the simulation studies.

Settari et al. in [4] encountered difficulties witie 8-node serendipity elements in their solution
of miscible problems. The 9-node Lagrangian fimtements have not been seriously tested in reservoi
simulation studies, hence the decision to use thmethe present work. All the simulation studies &ver
performed with the 9-node bi-quadratic Lagrangi@ments [1].

For the discretization of time, a fully implicit lseme was used to avoid any non-physical
oscillations. A Fortran IV source program was \eritto do all computations. The source program stssi
of a main program and 16 subprograms.

4.0 Result

To model the propagation of any instability that ymeesult in a liquid-liquid miscible
displacement process, numerical simulation is requi

Figures (2) to (4) show the results of the numésgaulation studies that were performed using
the Galerkin-based 9-node bi-quadratic Lagrangiaitefelements. All instabilities were initiated the
inlet face x = 0 by the condition of equation (2.10).

5.0 Discussions

From the results of the investigation, it is appathat equations (1.1) and (1.2) are sufficient to
model the liquid-liquid miscible displacement preseaunder unstable conditions. Reference [1] throug
inspectional analysis, showed that some of thefathat characterize instabilities are implicitiyoedded
in the equations.

Figure 2 shows an unconditional instability, whiefil not disappear with time. Perrine [11]
reported that the only instability observed is dtiodal instability — one that will disappear aftar
sufficiently long time. Our investigations agreettwihe experimental findings of Habermann [12].eTh
value of N (Ns = 590.63 [1,10] greater thanTt® demonstrates that the displacement will be
unconditionally unstable.

When compared to Figure 3, Figure 2 shows thatateeof the growth of any instability tends to
increase proportionally to a number of the M powedrereM is the mobility ratio. At the injection of 0.5
PV, the instabilities had reached the outer boundarL, for M = 20.
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Warren et al. in [13] and Perrine et al. in [14}atthat the effect of macroscopic dispersion in
miscible displacement processes is to dampen gmadiement fronts. Figures 4 shows the resultbef
simulation of initiated instabilities in a systenittwrandomly placed permeabilities. By B\j the front
had still not reached the outer boundary. The dadumacroscopic dispersion by the presence of
heterogeneity in permeability tended to dampen itistabilities. However, the instabilities were Istil
propagated, but not as severe as that shown imdsi@uand 3 for a homogeneous system.

6.0 Conclusions
The Galerkin-based 9-node bi-quadratic Lagrangiaitef elements were used to successfully

simulate the propagation of instabilities in liculiguid miscible displacement processes.
The investigations reveal,

i. An unconditional instability which will not disapaewith time,

ii. The rate of growth of the instabilities, tendedrterease proportionally to a number to e
power, where M is the mobility ration

iii. The propagation of instabilities can be achievadugh the actions of viscous, gravity and
heterogeneous forces,

iv. Heterogeneity in permeability introduces a macrpgcalispersion effect that attempts to
stabilize the instabilities, and

Also the investigations show that the convectiv@adision equation is suitable to model unstablgidiq

liquid miscible displacement processes.
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