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1.0 Introduction 

 Since the time when Bush in 1866 gave his observation of the disappearance of 

cancerous cell on the skin surface after a patient had high fever; there has been a lot of 

work on the investigation of the effect of heat deposition and the consequent rise in 

temperature in an attempt of using heat to destroy or control the growth of cancerous 

cells. 

 Heat deposition is reported in the literature as non-uniform in tissue location [7-

10].  Possibility of hot spots had also been reported in tissue and thus a mathematical 

model to promote insight to the heat deposition pattern and consequent use of 

temperature is advanced by different authors [1, 2, 4, 5, and 11]. 

 A number of researches have been carried out; some of these are enumerated 

below.  Saxena and Arya [9] investigated the steady state temperature distribution in 

human skin and sub dermal tissue exposed to a dry and cool environment with negligible 

perspiration; Pal and Pal [8] also studied the steady state temperature distribution in 

human skin and subcutaneous tissue (SST).  Their model accounts for heat conduction, 

perfusion of the capitulary bed and metabolic heat production of the dermis and 

subcutaneous tissues.  Kritikos et al. [6] used the Pennes model but introduced the 

evapotranspiration from the surface into their model and thus predicted the steady state 

temperature rise in a homogenous tissue sphere exposed to plane wave electromagnetic 

energy.  Recently Jiang et al. [12] discussed the effects of thermal properties and 

geometrical dimension on the skin burns.  Lui and Marchant [13] considered the 

microwave heating of three-dimensional blocks with a transverse magnetic wave-guide 

mode in a long rectangular wave-guide. El-dabe et al. [4] studied the effects of microwave 
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heating on the thermal states of biological tissues.  The purpose of the paper is to 

establish qualitatively that solution exist and give condition for uniqueness of solution. 

 This work is presented in four sections.  We gave the literature review in section 1, 

the mathematical formulation of our problem is presented in Section 2 while the existence, 

and the uniqueness theorems are given in Section 3. In section 4 we give brief discussion 

and conclusion. 

 

2.0 Mathematical formulation 

 In the works of Kastella and Fox [5], Wulff [11] some equations of temperature 

variation were given in living tissue. Adebile [1] worked on the generalized equation, which 

is given as: 
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and in conjunction with the conservation of mass and momentum equation which are 

respectively: 
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with the initial and boundary conditions 
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( ) ( ) ( ) ( )tmt,d,tmt,Cq ′=′′′′=′′
21    (2.4) 

    010 >′<′′< t,d,c  

using dimensionless variables as in (2.1) we have the hydrodynamic fluid (blood) equation 

as  
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with the non-dimensional energy equation as 
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with the initial and boundary condition being  
  ( ) ( )ηη,0 θo=θ ,  ( ) )(q,q

o
η0η =     (2.8) 

( ) ( ) ( )τττ ,b,F,a θθ =   = ( )τG ,  0τ0 >∞<< ,b,a   (2.9) 

  ( ) ( )ττ 1m,cq = , ( ) ( )ττ 2m,dq = , 0τ10 ><< ,d,c   (2.10) 

we have some physically responsible assumptions. 
 
3.0 Existence and uniqueness theorems 
3.1 Preliminaries 
The equation (2.5) – (2.10) is simply put in the system of equation below 
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  ( ) ( ) 0τ1τ0 == ,u,u ,   ( ) ( )τ10τ01 ,, =θ    (3.3) 

we state some conditions on the dependent variables before we proceed to the theorems and proofs. 

(S.1)  ( )ηoû  and ( )ηθo
ˆ  are bounded for ( )10,∈η  and has at most a countable number of discontinuities  

(S.2) f and g satisfy the uniform Lipshitz condition. 
( ) ( )2211 θτηψθτηψ ,u,,,u,, − ( )21211 θθ −+−≤ uuk  

( ) ,D, ∈τη  and ( ) ( ){ }A,,,,D ≤<∈= τητη 010  the solution of (3.1)-(3.3) is the dual ( )θ,u  which is 

defined and continuous in D  and which at each point of D has continuous uniformly bounded partial 
derivatives satisfying the system of parabolic equations in (3.1) – (3.3). 
3.2 Existence result  
Theorem 3.1 

 Let ( )ηoû , ( )ηθo
ˆ  and f and g satisfy (S.1) and (S.2) respectively.  Then there exists a solution of 

problem (3.1) – (3.3). 
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Proof 
 We construct the sequence ( )ku  and ( )kθ  which satisfy 
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3.3 The uniqueness problem 
 We shall show that our problem has no more than one solution. We state a theorem and prove it. 

Theorem 3.2 
 There exists at most one bounded solution of problem (3.1) – (3.3) which satisfies (S.1) and (S.2). 
Proof 
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4.0 Result and discussion 
Our result clearly gives us condition for the existence and uniqueness of a solution and if a 

solution does not exist the required rise in temperature that will promote a therapeutic effect on the tumour 
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and cancer will not be achieved. This result also revealed that rise in temperature is a certainty consequent 
to microwave radiation.  The uniqueness result gives a criterion for a non-multiple solutions.  
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