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Abstract 
 

We consider the effect of temperature dependent thermal 
conductivity on temperature rise in biologic tissues during 
microwave heating.  The method of asymptotic expansion is used 
for finding solution.  An appropriate matching procedure was used 
in our method.  Our result reveals the possibility of multiple 
solutions and it gives insight to avoiding hot-spot in the tissues.  
Clearly some tissues are heat sensitive while others are heat 
resistant. 

 
Keywords: Thermal conductivity, temperature rise, biologic tissues, microwave heating. 
 

pp. 181 - 186 
1.0 Introduction 

The subject of heat deposition and consequent rise in temperature in living tissues 
has been the studies in a number of literatures [2, 3, 7, 9, 12, and 13].  These researches 
were prompted due to the therapeutic advantage the rise in temperature within a given 
range had on the cancerous tissues.  Diseased cells are destroyed at the rise of 
temperature within a given time.  Increase in number of cells is destroyed after a longer 
time interval.  At a given time and an increase in the rise in temperature greater numbers 
of cells are destroyed [1, 16] 
Heating deposition is not uniform in tissues, destruction of surrounding normal tissues, 
possibility of hot spot, heat sensitivity or resistance of tissues are some of the questions 
that are raised in the literature [4, 5, 15, 16]. 

The physical properties of tissue can lead to formation or hindrance of hot spot as 
reported by Smyth [15].  Saxene and Arya [14] in their model of temperature distribution 
in human skin assumed that the rates of blood mass flow, metabolic heat generation and 
tissue thermal conductivity are different in the three-layer model proposed.  The rate of 
blood flow and metabolic rate was considered a function of position and temperature. 
Pal and Pal [13] studied the steady-state temperature distribution in human skin and 
subcutaneous tissue (SST). Their model accounts for heat conduction, perfusion of the 
capillary beds and metabolic heat production of the dermis and subcutaneous tissues. 
Using other simplifying assumptions they obtain their solution in terms of confluent 
hyper geometric and Airy’s function. Very recently Jiang et al [8] discussed the effects of 
thermal properties and geometrical dimensions in the skin burn injuries. Ng and Chua 
[12] proposed a comparison of one and two-dimensional programmes for predicting the 
state of skin burns. Lui and Marchant [11] considered the microwave heating of three-
dimensional blocks with a transverse magnetic wave-guide mode in a long rectangular 
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wave-guide. El-dabe et al [6] in their paper investigated the effects of microwave heating 
equations in the thermal state of biological tissues. They consequently predicted the 
effects of the thermal physical properties on the transient temperature of tissues. 
In the present work we are studying the effect of temperature dependent thermal 
conductivity on temperature rise of biologic tissue during microwave heating. In the next 
section we present the mathematical formulation of the problem, while in section 3 we 
outline the method of solution.  In section 4 we discuss the result. 
 
2.0 Mathematical formulation 

Following the works of Kritkos, Foster and Schwaw [10] and Wulff [17] we have 
our Energy equation as:  

)t,T,x(QHmTbb ++−=
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 (2.1) 

We consider the following reasonable simplifying assumptions 
(a) We neglect the heat due to metabolic process. 
(b) We assume: 

(i) Uniform blood flow 
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(ii) The thermal conductivity 
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Non-dimensionalising the equation as in Adebile [1] we have 
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with initial and bounding condition 
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3.0 Method of solution 

We solve for the steady state problem in this paper.  Hence the equation we shall 
solve is 
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for solution near η  = 1, in equation (3.1) and (3.2) we have for a selected d = 0 
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Using the relevant boundary condition we have  oa)( == χθ 0    (3.9) 

01 p)( == λθ    (3.9a) 
We now match the inner solution )( iθ  and outer solution )( oθ  using the matching 
condition  
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After much algebra we obtain 
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The solution to the problem becomes 
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Solving the equations in (3.11) and (3.14), we obtain a1 and p1 for specific variables.  
Other results such as a2 and p2 follows.  For the purpose of our graph, we denote 

Thetha ,  ,  , l22lhl00 ≡≡≡≡ θααα aaa h  (where S1 means solution 1 and S2 solution 2), all 
other variables were used as they appear in the text on the graph. 
 
4.0 Result and discussion 

Our result revealed the existence of more than one solution at any given location 
within the tissue volume. This observation is clear from Figures 1-8.  We can hereby state 
that solution to the temperature rise is unstable when the thermal conductivity is 
dependent on temperature. Great care must be exercised so that normal tissues are not 
destroyed since the part of solution at any given stage cannot be predicted. 
 In Figure 1 it is clear that boundary condition affects the possible rise in 
temperature at a given tissue location. Adjusting the boundary condition will surely 
adjust the location of a desired maximum temperature rise. 
 Figure 2 reflects that the highest temperature rise can be located at about the mid-
point of the tissue. This knowledge can be used effectively for centrally located tumours. 
 
 
 
 In Figure 3 and 4, the rise in temperature exhibited different profiles for different 
thermal conductivities.  We can see that hot spot formation can be hindered with the aid 
of the thermal conductivity. Higher rise in temperature is possible for lower thermal 
conductivity.  Similarly the behaviour of thermal conductivity can promote cold spot as 
seen in Figure 4.  This will be useful in Hyperthemia. 
 In Figure 5, comparism is made of the rise in temperature with different thermal 
conductivity. This figure actually supports the discussion in Figure 2-4. 
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 On the other hand, figure 6 reveals the possible rise due to a given heating device.  
This will guide the medical expert regulate the parameters used in design of the heating 
devices to achieve the maximum/desired temperature rise.  The size of engine can also 
lead to a greater or smaller rise in temperature. 
 Figure 8 gives a clear picture of the effect of different thermal conductivity.  Our 
result is a significant one for use by medical expert to promote effective microwave 
hyperthermia.  Our result agrees with experimental findings of instability of temperature 
rise due to non-uniform deposition of heat in tissue.  The effect of the thermophysical 
property will throw more light on the need to know precisely tissue properties before 
hyperthermia commences.  These result no doubt improve medical technology and gives 
guides to engineer in the design of machine. 

Temperature rise plotted against Space coordinate for the respective variables: 
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Temperature rise plotted against Space coordinate for the respective variables: 
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Temperature rise plotted against Space coordinate for the respective variables: 
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Temperature rise plotted against Space coordinate for the respective variables: 
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Temperature rise plotted against Space coordinate for the respective variables: 

 al0 = 1  alh= 1  al2 = 1 a0 = 0  b1 = 1  m = 1  p0 = 0 a = .5  b= .5 

-0.800000

-0.600000

-0.400000

-0.200000

0.000000

0.200000

0.400000

0.600000

0.800000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8000001 0.9000001 1

Space coordinate

T
em

p
er

at
u

re
  r

is
e 

ThethaS1,n=1

ThethaS2, n=1

ThethaS1,n=.5

ThethaS2,n=.5

ThethaS1,n= -.5

ThethaS2,n= -.5

Fig. 5

 
Temperature rise plotted against Space coordinate for the respective variables: 
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Temperature rise plotted against Space coordinate for the respective variables: 
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Temperature rise plotted against Space coordinate for the respective variables: 
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