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Abstract 

 
The behaviour of chaotic Hamiltonian system has been 

characterised qualitatively in recent times by its appearance on the Poincaré 
section and quantitatively by the Lyapunov exponent. Studying the dynamics 
of the two chaotic Hamiltonian systems: the Henon-Heiles system and non-
linearly coupled oscillators as their trajectories intersect Poincaré section 

01 =q , 01 >p , these intersections are random.  To determine how random 

they are we shall model the intersections as a Markov chain and show that 
these intersections describe a closed ergodic Markov chain with a doubly 

stochastic matrix ,ijπ ∑ ==∑
j

ij
i

ij 1ππ .  This is true for these systems with 

an error of %2± . 
 

pp. 199 -202 
1.0 Introduction 

An important class of dynamical systems is the Hamiltonian dynamical systems.  They can be 
described by a set of 2n first-order Hamilton-Jacobi equations. These equations are regarded as a vector 
field, which define a flow in phase space [3]. The vector field is given by the flow of Hamiltonian 

)p,q(H , which is the total energy of the system. Conservation of the energy in the Hamiltonian systems 

requires the value of )p,q(H  remain constant along the trajectory therefore E)p,q(H = . Under this 

condition one degree of freedom is lost and the trajectories are bound to a condition E)p,q(H =  or to a 

2n - 1–dimensional surface on the phase space or to a surface,Σ  of constant energy, known as the Poincaré 
section.  

Akin-Ojo [1] considered a closed bounded system with Hamiltonian )p,...,p,q,...,q(H nnn 11 of n  

degrees of freedom, ,n 2≥  where EH n =  is the only integral (or constant) of motion. The chaotic 

behaviour of this system can be modelled with a mapping of M  of Σ  into itself.  The Σ  can be celled 
into m  cells with a probability distribution which predicts the randomness onΣ .  Akin-Ojo established 
that the dynamics onΣ  follows a Markov chain, with doubly stochastic matrix. Then as a totally chaotic 
system (no constant of motion at all) the chain is ergodic. 

In this paper the two systems Hénon-Heiles system [4] and the nonlinearly coupled oscillators 
system [2], NLCO, are of two degrees of freedom i.e. n=2. These closed Hamiltonian )p,p,q,q(H 2121  of 

two degrees of freedom and one constant of motion E)p,q(H =  on the Poincaré section ,aq =1 01 >p  are 

non–integrable, so they exhibit chaos.  These systems being nonlinear can only be analysed by numerical 
computations.  Their behaviours are then exhibited on the Poincaré section P.S.  Studying the dynamics of 
these systems as their trajectories intersect the P.S. these points of intersections are random.  The complex 
appearance of the various intersections of the systems on the P.S. leads to the question of a relationship 
between statistics and chaos. We model the intersections in terms of a Markov chain (process) by celling 
Σ  into two.  Then we show that as a totally chaotic system they describe a closed ergodic chain with a 
doubly-stochastic matrixijπ , 1=∑=∑

j
ij

i
ij ππ .  

2.0 Computational analysis  
The chaotic Hamiltonian system of the form )q,q(V/)pp()p,p,q,q(H 21

2

2

2

12131 2++=  can be 

solved for using Hamilton’s equations of motion,   
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11 pHq ∂∂=&  11 qHp ∂−∂=&  

22 pHq ∂∂=&  22 qHp ∂−∂=&   (2.1)  

Since H is nonlinear and non integrable with EH =  the only constant of motion, we cannot solve this 
problem analytically. Using Runge-Kutta’s fourth order method to solve numerically, data points are 

generated as the trajectory intersects the Poincaré  ,1 aq = 01 >p . 
 
 
 

The result on the P.S. is subject to the initial condition. The degree of chaoticity of the system 
depends on the total energy. 
(1) The Hénon-Heiles potential [4] with potential function 32 3

22

2

1

2

2

2

121 /qqq/)qq()q,q(V −++=  

and Hamiltonian 322 3

22

2

1

2

2

2

1

2

2

2

1 /qqq/)qq(/)pp(H −++++=  the dynamics of the system are given by 

111 ppHq =∂∂=&  )qqq(qHp 21111 2+−=∂−∂=&  

222 ppHq =∂∂=&  )qqq(qHp 2

2

2

1222 −+−=∂∂−=& .  (2.2)  

This system is totally chaotic for 61/E =  (Figure 1a).  For this particular energy, the intersections on the 
P.S.are thereby modelled as Markov chain.  
(2) The nonlinearly coupled oscillators [2] with potential function 

2

2

2

1

4

2

4

1

2

2

2

121 344232 qq/q/q/q/q)q,q(V ααα ++++=  

where 1=α and Hamiltonian 2

2

2

1

4

2

4

1

2

2

2

1

2

2

2

1 3442322 qq/q/q/q/q/)pp(H ααα ++++++=  where 

1=α . The dynamics of the system are given by 

111 ppHq =∂∂=&  )qqqq(qHp 2

21

3

1111 6++−=∂∂−=&  

222 ppHq =∂∂=&  )qqqq(qHp 2

2

1

3

2222 63 ++−=∂∂−=&  (2.3) 

This system is totally chaotic for 100=E  (Figure 1b). For this particular energy, the intersections on the 
P.S. are thereby modelled as Markov chain. 
 
3.0 Markov Chain  

There are systems of finite number of states (classical or quantal), which can be modelled as a 
Markov chain or (process) [1, 6]. For these systems their trajectories are chaotic and the points of 
intersections are random. Let us take the point of intersection say, X , as a random variable.  If the 
trajectory intersects the P.S. at point j  at step r , then it will do so again at some region.  Hence, 

∑ =j )r(P 1.  But one does not know where it will intersect the P.S at step )r( 1+ .   We assume there is a 

probability that it does at region k .  Then the probability that the system is in state k  at step )r( 1+  is  

jk

m

j
jk )r(P)r(P π∑=+

=1
1     (3.1) 

The Markovian property is that at any given time the probability of transition (or movement) from one 
statej  to statek  does not depend on how one arrived in one’s present state.  The Markovian chain is a 

process without memory of the past [5].  

jkijijkjk )r(P)r(P)r(P πππ 11 −∑∑=∑=+    (3.2) 

r

ik

m

i
ik )(P)r(P π0

1
∑=
=

, Λ,,,r 210=     (3.3) 

 where { }m

ii )(P
1

0 =  is the initial probability distribution )r( 0= , with 0≥ikπ . 

o)r(Pi ≥  such that 1=∑ )r(P
m

i
i , 1

1
=∑

=

m

k
ikπ    (3.4) 

 If condition 1
1

=∑
=

m

k
ikπ  holds, then π  is a double stochastic matrix and is independent of time r . 

 
4.0 Modelling the Hénon-Heiles system and NLCO system as a Markov Chain 

The Poincaré sections of the Hénon-Heiles system and the NLCO system can be partitioned into 
two cells, because of the symmetry of the curves.  These are shown in Figures 2(a) and 2(b) for 100, 200, 
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300, 400 points of intersections.  Let us take 100 points of intersections as our initial distribution.  Starting 
in state i  at time step 100=r , then our initial distribution 

{ } [ ])(P)(P)(P
ii 100100100 21

2

1
==    (4.1) 

The probability that the system is in state k  at time 2001 =+ )r(  is 

ik
i

ik )(P)(P π100200
2

1
∑=
=

    (4.2) 

 where 








−
−

=
ββ
αα

π
1

1
ik  is the transition matrix.  In order to calculate ikπ  this process is taken up to 

 
 

2
2

1
100300 ik

i
ik )(P)(P π∑=

=
    (4.3) 

2
2

1
100400 ik

i
ik )(P)(P π∑=

=
    (4.4) 

Note that 1
2

1
=∑

=
)r(P

i
i .  Solving equations ((8)-(11), we calculate the transition matrix of the systems. 

The transition matrix for Hénon-Heiles system 61/E =  is given by 









=

5050

5050

..

..
ikπ     (4.5) 

This transition matrix describes closed ergodic Markov chain with a doubly stochastic matrix within an 
error of 2%.  The transition matrix for the nonlinearly coupled oscillator system for 100=E  is 
 









=

530470

460540

..

..
ikπ    (4.6) 

This transition matrix describes a closed ergodic Markov Chain with a double stochastic matrix within an 
error of 1.2%.  
 
5.0 Discussion and conclusion 

For the totally chaotic systems (ergodic states) we  

have determined the transition matrices for the Hén on-

Heiles system and the nonlinearly coupled oscillato r. 

These are doubly stochastic within an error of 2%.  the 

systems as a Markov chain we were able to determine  

the transition matrices of these systems, which giv e a 

quantitative result of chaos instead of the usual 

Lyapunov exponent, while the portraits of the syste ms 

on the P.S. give a qualitative result of chaos. A m ore 
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accurate celling of the Poincaré section into four or 

more will be carried out for further work. 

 

 

 

 



Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004. 
Chaotic Hamiltonian systems as a Markov Chain  Oyebola Olubusoye Popoola and R. Akin-Ojo     
J. of NAMP 

 

 

 

References 
[1] Akin-Ojo R. (2000) Hamiltonian systems with one degree of freedom, Invited talk at the 11th Annual 

colloquium of the Nigerian Association of Mathematical Physics. 
[2] Denardo B. Earwood J. and Sazona V. (1999) Parametric Instability of Two Coupled Nonlinear Oscillators, 

American Journal of Physics, Vol. 6, No. 3, p187-195. 
[3] Gutzwiller M.C. (1990) Chaos in Classical and Quantum Mechanics, Springer-Verlag, New York. 
[4] Hénon M. and Heiles C. (1964) The Application of Third integral of Motion: Some numerical experiments, 

The Astronomical Journal Vol. 69, No.1, p.73-79. 
[5] Popoola O.O. (2002) Statistics on Poincaré of Three Particular Chaotic Hamiltonian Systems, Ph.D Thesis, 

University of Ibadan, Ibadan, Nigeria. 
[6] Kemeny J.G., Mirkil H., Snell J.L. and Thompson G.L, (1959) Finite Mathematical Structures, 

Prentice-Hall, INC. Englewood Cliffs, N.J., U.S.A. 
 
 
 
 
 
 
 
 
 
 
 
 

 


