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Abstract

This paper presents the dynamic analysis of theraitons of a
uniform beam under the action of a concentrated msagravelling with
variable velocity. The solution technique discudsevolves the expansion of
Dirac delta function in cosine series form, a moitiftion of the Stumble's
asymptotic method and the use of the generating diion of the Bessel
function type. Analytical solution are obtained drnthe numerical results in
plotted curves show that for the moving force anéwing mass problems, the
response amplitudes of the bean traversed by a loaaking with variable
velocity decrease with an increase in the foundaticonstant K. Similarly,
the critical speed for the system traversed by aving force is found to be
smaller than that under the influence of moving nmmsshowing that
resonance is reached earlier in moving mass probleAiso, the displacement
amplitude of the moving mass is greater than of theoving force. This
further confirms the non-reliability of the movingforce solution as safe
approximation to the moving mass problem.
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1.0 Introduction

The problem of assessing the dynamic behaviourtrotsires carrying moving loads has been almost
exclusively reversed in literature for moving loadsving at constant speeds. Among these is th& wfoBtanisic et
al [1], Milormir et al [2], Sadiku and Leipholz [3Dni [4, 5], Gbadeyan and Oni [6] to mention a.few

The more practical cases when velocities at whielsé loads move are no longer constants but vainytie
time have received little attention in literaturg 90]. This may be as a result of the complexefiane dependencies
inherent in such problem. Specifically, even wtika inertia effects of the moving load are negl@ci@alytical
solutions involving integral transforms are botlrastable and cumbersome. However, such pragicgllems as
acceleration and braking of automobile on roadwayd highway bridges, taking off and landing of aiafts on
runway and braking and acceleration forces in @ileutation of rails and railway bridges in whicketmotion is not
uniform but a function of time have intensified theed for the study of the behaviour of structureder the action of
loads moving with variable velocity. The clasgpodblems was first tackled by Lowan [8] who sohtkd problem of
the transverse oscillations of beams under theract moving variable loads. Much later, Kokhmakand Filippov
[9] treated the dynamic effects on the transverséian of a uniform beam of a load moving at vargabpeed. The
work of Gbadeyan and Aiyesimi [10] is a recent depment in this area of study. In particular, theydertook the
analysis of the dynamic response of a finite beantisuously supported by a viscoelastic foundatma moving load
moving at variable speed. It was found that thiopeof the resonating vibration decreases withréasing value of
lateral frequency of the load. However, in thisrkydghe inertia effects of the moving load are assd negligible and
only the force solution is not an upper bound Far actual deflection of an elastic system.

Thus, this work is concerned with the flexural mas of a uniform beam under the actions of a canateal
mass travelling with a variable velocity. The malnjective of this paper is to provide a closedrf@olution to this
problem and to classify the effect of various pagters of the dynamical system on the responseedi¢am.

2.0 Formulation of the initial boundary valve problem
The undamped motion of a Bernoulli-Euler beam ngstin an elastic foundation and under the actioa of
load moving with variable velocity is governed b tpartial differential equation
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6“U(x,t)_N azu(x,t)+lu 0 U(x t)

ax* 79X b +KU (x,t)=Q(x.t) (2.1)

EJ

whereEJ is flexural rigidity of the beam, is the axial force,t, is the mass per unit length of the beam, K is the

elastic foundationU(x,t) is the transverse displacemexandt are the spatial and time coordinates respectiaiy,
Q(x.t) is the concentrated load moving with variableoe#l. The structure under consideration is simgipported
and carrying a concentrated mdswhich is moving at variable velocity. Conseqlerthe boundary conditions are

2
u(o,t)=0=L(L,t)= o'V (? 1) =0=2Y (ZL't) 2.2)
0X 0x
It is assumed that the initial conditions of thetimo are U (X,t) =0= w (2.3)
X
If we consider not only the force effects of tlmcentrated moving load but its inertial effectsasdl and
the motion of the contact point of the moving lasdiven by X, = f(t) (2.4)
then according to d’Alemberts principle [7], thadbis of the form
d?Ulx ,t
Q(x,t)=Mga(x- f(f) 1—1# (2.5)
g ot
- dU (xp ,t) _ _ _
where the acceleratlor-\T of the mass is computed from the total differdrdfahe second order of function
U(x,t) with respect td.
d?U(x,.t) _d2u(x.) 44U (xt) of (t) , dulxt)(af ()}, du(x.t) 9°f(t) 26
ot’ ot’ oxat  dt ox’ dt ox  dt? '
If we take f (t) to be of the form f (t) =x, =/sn gt (2.7)

wherex, is the equilibrium position of the longitudinalbgcillating load,/ is the longitudinal amplitude of oscillation

of the load andf is the longitudinal frequency of the load equat{@dl) by virtue of (2.4) to (2.6) after some

simplifications and rearrangements, becomes

U (x,t 9°U (x,t 9°U (x,t
() 0Ukt), , 0Ux)

ox* 7 Xt "ot +KU(X't)

EJ

+ M3, +Asnﬁt]{auf“)+2ﬂ/lcos/3t Z:t(x 1)y g e pr 09 ) “(X ) e

+/|sin,6’tyua—f(x’t)} = Mga[x—(x0 +—)/I sin,Bt]

3.0 Transformation of equation

Equation (2.8) is a fourth order partial differa@htequation, which in addition to being singulas variable
coefficients. Firstly, by virtue of the boundargndlitions the fourth order equation will be redutedsecond order
equation by applying the finite Fourier sine in@dgransform with respect to The integral transform is defined as

u(j.k)=[ U (x,t)sjnj—’LTde (3.1)
with the inverse U (X,t) = % YU (X,t)sinjLLX dx (3.2)
=1
Thus applying (3.1) to equation (2.8), one obtains
U, ,t)+ny(j,t)+%[Pa(j KR k) R+ (1] == sin T o + Asin 1) where
b b

{2
H, My \ L M,

Pa(j’k't)zjoLd[X‘(Xo+/lsinﬁt)]azu(x’t)sin jrx

e C dx (3.4)
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. L _ . 02U (xt) . jmx
Pa(J,k,t)—jOZ,B/Id[x (x0+/lsm,8t)] FYED sn 3 adx (3.5)

. ITI. . OZU(x,t) . JITX
PC(J,k,t)—jO,B /¥ cos ,B’td[x—(x0+/lsm,8t)] v dx (3.6)

Pd(j,k,t) =Is ,B’/Ism,Btd[x (x +/IS|n,6’t)]aU():(t)sinj—7LTde (3.7)

Next, we evaluate the integrals in equations (3.4) tg (Bo7this end; use is made of argument
similar to these in [1,5]. Thus, in equation (3.5), thapprty of the Dirac-delta function as an even function
is used to express it in Fourier Cosine series given by

. 1 ® nm . cos nir
Olx=(x, +0Osin t]:—1+2 cos — (X, + /Asin Bt 3.8
(%o Bt) L{ nzﬂ 3 (%o Bt) } (3.8)
2 .k
Also, in view of equation (3.2), we have U, (Xt)= IKZIUH( k,t)SmT (3.9)
Substituting (3.8) and (3.9) into (3.4), one obtains
p.ikt)-25 5 U‘.(k,t){ln+2cos”—”<xg+/lsmﬁt)lb} (3.10)
.k .m
where I, =1 sin Tnxsm Tnxdx (3.11)
nx . kmx . 7
I, =] cos sin sin dx 3.12

o = b 3 3 3 (3.12)

Carrying not the integration in (3.11) and (3.12) amchéifying, the desired transform is obtained as:
p.( j,k,t)%{u L0 k) + i;uu(k,t)sin ]—L”(xo +0sin Bt.sin kTﬂ(x0 +/sin 'Bt)ﬂ (3.13)

Following similar argument as in the previous analysigaggn (3.5) becomes

p.Cike) = 2 o5 s ( k t)[ .+ 25 cos T (x, + fsin ﬂt)ld}(3-14)
k 72x m 7ix
where I, = [,cos Tsm dx (3.15)
I, = floos 2% cos K7X Gin A7 gy (3.16)
L L L

Evaluating } and | equation (3.14) after some simplifications and rearrangenyéit

Ph(j,k,t):—‘T—fcos/}tiwk,t)[sa( j.k)+ 23 S,( j,k,n)cosn—Lﬂ(xO/I sin,Bt)} (3.17)

jk

2_j2

and Sb(j,k,n):- jk[k2+n2_j2]

[nk) =17 [-K) -]

wheres, (j,k)- ” (3.18)

Equation (3.16), in the same vein leads to

p.(jkit)= wCosz ﬂtiU(k,t){la + icos%(xo + A sin ,Bt)lb} (3.19)

where |, and l,, are as defined in equation (3. 11) and (3.12). Thudlatwfs that

ey (BATD) : > gnJT km
p.(j.kt)=—"——— C ~——7cos ,Bt[ U(jt)+Zk .sin (x +dn fAt)sin 2 (3.20)

(X, +Asin Bt)U(K,t)]
The same argument leads to

p,(j.kt)= MsnﬂtZU(kt)[ +3 sosnTﬂ(xO+/lsin,Bt)ld} (3.21)
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where | . and |, are defined in (3.15) and (3.16). Consequently equati@d)fads to
2
’8 sm,BtZU(k t)[S(J k)+22 S(i.k, n)con—(x0+/lsm,6’t)} (3.22)

whereS, ( j,k) and S,( j,k,n) are as defined in (3.18). Using equation (3.13), (3.(B720) and
(3.22), equation (3.3) can be simplified and rearranged ifothe

Pa(J k) =—

2

un(j,t)ﬂ/,-U(j,t)+eo{un(j,t)+(ﬁfj”j cog AHU(j 1)+ 30, (ki)sin

”—”(xo +/Isin,8t)sink—ﬂ(x0 +/lsin)—U(k,t)%[cos,8tSa( i k)+

2st(] K, n)cos—(xo +/lsingt )] U(kt)A’B{'B/”: T cog ,Btsianﬂ(xo +AsnBt) (3.23)

s‘nk_”(xo +/lsin,8t)+4,BSa(j,k)sin,Gt+§8,@n(j,k,n)sinﬁtcosnTn(xo +/|5met)}

psmjn( +ASMBt)

b

whereg, = M (3.24)

HyL
Equation (3.23) represents the transformed equation ofromiédastic beam under a load moving with a
variable velocity. Evidently, an exact closed form solutiothts equation is impossible. Consequently, in
what follows two cases of the coupled equation are considered.
€) Moving Force

If we neglect the inertia term, we the classical case of a mdeirng problem. Under this
assumption€, = 0 and equation (3.24) after some simplifications and rearraemjemecomes.

Un(j,t)+yj2U(j,k)=lu£[sinFcos(Gsin,Bt)+cosFsin(Gsin,Bt)] (3.25)
_ 7K, ,
F=z2""° _jnC
where L and = (3.26)

In order to solve this equation, the generating functibrthe Bessel function of ordek given by

7(x 1/t)

k+2m
z 1
- J - -1 o -
=Y wt“J (G) where J,(z)= Z( )" [2] (Krmym is used to derive the

following Bessel function relations

(i) cos(GsinBt)=J,(G)+25.J,.(G)cos2mBt (3.27)
m=1
(ii) sin(Gsingt) =25 J,,,(G) sin(2m+1)t (3.28)
Firstly, it is straight forward to show that thergral solution of the homogenous part of (3.25) is
given by; UC( j,t) :Clcosyjt +C28inyjt (3.30)

whereC, andC ,

U,(J.t) = p(t)cosy t+ p,(t)sinAt (3.31)

are constants. Thus a particular solution to Bgug3.25) takes the form
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where pl(t)r and pz(t) are function to be determined. From equation (3.81s straight forward to
P

b7 j

show that p.(t)= [sin y t[sin F cos( G sin At) + cos F sin( G sin At )]dt (3.32)

p
b/ j
Using the Bessel relations in equation (3.27) amdestrigonometric identities yields

and p,(t) = jcosyjt[sinFcos(Gsin Bt)+cos Fsin( Gsin ,Bt]dt (3.33)

p(t)=—P {sinFJO(G)COSb‘)t+2$inFiJ2k(G){COSb1t+COSb2t}+ZCOSFiJZkH(G)}
4 o k=1 2b1 2b2 k=0
snbt snbt (3.34)
b, 2o,
p(t)=—P {(G)SSW+2s1nfia(e){s‘”blt+%bﬂ+2cosFiazkH)G)
g k=1 k=0
d ’ ’ i (3.35)
cosh,t cosht
%, 20,

where By =pb =y +2k00 =y —2XK06,0 =y +(K+1)Bb, =y ~(XK+1)B (336)
Using (3.34) and (3.35). The patrticular solutidrttee non-homogenous second order differential
equation takes the form.

U (j,t)= P sin{FJO(G){cos(y"b¢+ sin FiijJ2k (G)cos@

b/ j 0 - 1
(3.37)
. b o0 . b . b
+cosu+cosF2J2m(G cos (y‘ )4 —sinli >
bz k=0 b4 bs
consequentlyJ(j,t)=U_(j,t)+U (].,t) (3.38)
Applying the initial conditions (2.3) to (3.28) gltonstants are found to be
c =P lgnFlC) i gnEss () Lel (3.39)
' MV, bo = b1 bo .
_ - —-b -b
and C,=—F {cos F3J3,..(G ){y’ < Y 3}} (3.40)
Uy, k=1 b4 b3

Substituting (3.39) and (3.40) into (3.38) and eiing after some simplifications and
rearrangements yield
o snkFJ,(G)y.
U= 25 [STEUOW,
Lyl by

cos(y, —b, )-cosyt +cos(yj —bz)tcosyjt}

[cos( y, b, )—cosyjt]

5 . (3.41)

y, sin(y, -b, t=(y;, -b,)sinyt [y, sin(y, b, X~(y, -b,)siny
b, b,

Equation (3.41) is the displacement responseeob#dam due to the moving force.
(b) Moving mass—entire equation

+y, sinFiJZk(G){
k=1

+cosFiJM(G){ }sinjn(
k=0
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If the moving load has mass commensurable withdh¢éhe elastic bam, the inertia effect of the
moving mass is not negligible. Th,= 0 and we are required to solve the entire equa8d8j. This is

termed the moving mass problem. Evidently, an esasted form solution of this equation is not pbksi
Thus, we resort to the approximate analytical smtutechniques which is a modification of the asyotip
method of Struble discussed extensively in [5]

First, equation (3.32) is rearranged to take thenf

_&.a.ny (jt)—GZ(j’n’t)U 0 {Qa(j,k,t)

U“(t,j) U (t’j)

(J.)+> Gy(jet) "

Go(jr‘g!t) Go(j,f,t) t:lj

+Mut(k,t)+MU(k,t})

_ p . j_lT .
G,(].6.0) G,(J.61) ———sin—(x, +/AsinGt) (3.42)

UG (et) L
G,(j,&.t) :1+£0(2—C0321T]T(x0 +/Isin,6’t)j

where G,(j,&,t) =#{SH( j.j)cosfBt+ Zi S.( j,j,n)cos%-[(x0 +/|sin,8t)} (3.43)

. . n :
G,(j.&.t)=y*L, cos’ Bt-L, (:os,B’tstT(x0 +/1sinBt)

. i (3.44)
+45S,(j,j)sinpgt +28,6’Sb(j,j,n)sin,BtcosT(x0 +/sin Bt
Ga(j,k,t)=sianﬂ(x0+/lsin,6’t)sinkTﬂ(x0+/lsin,6’t) (3.45)

Gb(j,k)=#[sa(j,k)cos,8t+2§Sa(j,k,n)cos%T(xo +/Isin,8t)} (3.46)

Qc(j,k,/l,t)=’8—/|[L2 coszﬁtM(xo+/Isin,8t)smkn(xo+/lsin,8t)j
L L L
(3.47)
+4BS,(]K)Sn A+ £865,(j kin)sin B2 (x, + Asin )]
where L, = w (3.48)
2
L, =a kT (3.49)
12
L =pal L (3.50)

By means of these techniques, one seeks the moditquency corresponding to the frequency
of the free system due to the presence of the mgaviass. An equivalent free system operator defined
the modified frequency then replaces equation (I4ys, we set the right hand side of (3.4) to ze1d

. . . i £
consider a parametef, <1 for any arbitrary mass rat€, defined as: £, = . "g
0
(3.51)
It follows that £, =& +0(£) (3.52)
and
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1

. =1—5(2 cos (xO +/sinBt) +0(&? )j (3.53)
1+‘90[2—cos,2%-[(x0 +/lsin,[n’t)}

(3.54)

5{2 —COSZ%T(XO + /Isin,Bt)} ml

When &£, is set to zero in equation (3.42), a situatiorresponding to the case in which the

inertial effect of the mass of the system is regdrds negligible is obtained. In such a lase thdisao is
of the form

Usn(jlt)zcocos( yjt_¢j) (355)
where C,y, and ¢, are constants. Furthermore, &s<1 strubles technique requires that the solution
of equation (3.42) be of the fordd( J,K) =& j ,t)COS{VJ- _l/’(j ,t)]+51l11(j 1t)+0(512) (3.56)

Where 8( j,t) and/(],t) are slowly time varying functions.

In order to obtain the modified frequency, equat{8.6) is substituted into the homogenous part
of equation (.3.42). Thereafter, we extract onlg tvariational part of thed4 equation describing the

behaviour of 8(j,t) and ¢/(j,t) during the motion of the mass. Thus, making thissstution and
neglecting terms that do not contribute to varisicequations yield.

~2y & jt)sinly, —w( i)+ 260 i1 by, cosly t—w(jt)]

2 . . ) . ) (3.57)
-2y, £1§(J t)cos[yvt—z,z/(] t)]+y. £,0(] t)cosFlJO(Gl)cos[yjt—z//( J,t)]

T :
+2£,0(] t) cos[ylt (] t)]+£ o(j t)’B j CosFlJO(Gl)cos[yit—z//(J,t)]:O)

_n n - . . .
where F, = T and G, :T' The variational equations of our problem areant®d by setting
coefficients ofSianjt -yt )J and COSl_Vjt -]t )J in equation (3.57) zero respectively. Thus,
we have - 2y16€( jt)=0 (3.58)
and 20( jt ) (j.t)y, -2y,°e,0(jt)+y e, 6(jt)cos FI,(G,)

+ 26.0( j,t)ﬂ/'Lj” v e, ﬁ/len 8(j,t)cos F,J,(G,)=0 (3.59)
Equation (3.58) and (3.59) respectively imply o(jt)=0 (3.60)
28N A
and Y(jt)=——|2-cosF I, (G,)- 2PN J _BA ——cosF,J,(G,) (3.61)
Lyj Ly1
Thus, solving equation (3.60) and (3.61) one obtain 49( J ,t) = CJ-O (3.62)

where c? is a constant and

w(ij t)— {2 cosF,J,(G,) - 2L’8/|J7T ﬁ/””cosFJ (Gl):|t+¢;j (3.63)
yj i
where ¢ is a constant and therefore, when the effect efrtiass of the particle is considered, the first
approximation to the homogenous systertd§ ] ,t) = C, cos( Yl =@ ) (3.64)
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_ B ﬂ

J
is called the modified natural frequency repreasgnthe frequency of the free system due to the
presence of the moving mass. Thus, the homogerartisfn(3.45) can be written as:

d?U(j,t .
ULy i =o (3.66)
and equation (3.45) then takes the form
2
dU(i.t)
TﬂﬁmU(Jt) &,0L (X, +/Asnf) (3.67)
Evidently, this equation is analogues to equa(B)BS). Applying the initial yield conditions and
inverting yield;

Slnle

2 s L|sinFJ (G
U(xt)— .9 {# Jm[cos( ™ ) cosyjmt]

J—1 yjm b

[ i - t f _b - t 0
+yjmtsianJZk(G)[cos(y’m bJ cosyjm}r[cos(yjm 2)[ COSVJmi|+COSFZJ2k+1 (3.68)

k=1 bl b2 k=0

Vo SN, —b) = (Y, —b)tsing, t | . jr&

|meS|I’(me b)t (yjm )Smyjm|: : J b3 J J S'nJT

4.0 Analysis of closed form solutions

The transverse displacement of an elastic beam imeygase without bound. Thus one is
interested in the resonance conditions. EquatiofiljXlearly depicts that the elastic beam restingand
elastic foundation and by a moving force will grasthout bound whenever.

y, = 2kpB and y, =(2k+1)B (4.1)

While equation (3.68) shows that the same bearermti@ action of a moving mass experiences
resonance when

Vim =2KB andy, =(2k+1)8 (4.2)
But
Vim :yj{l > (2 cosFJ (G)—'BL)/Ujﬂ [2+cosF1Jo(Gl )] 4.3)
which implies y = 2kB
1- 52{[2 —cos F,3,(G) - /i/}‘/“’ [2 + cos F,J, (G]

J

Therefore, it is evident from (4.2) and (4.4) tlat same natural frequency, the critical speed for
the system consisting of an elastic beam restingrorlastic foundation and traversed by movingeforc
with variable speed is smaller than that of mowimass problem. Hence resonance is reached earliee in
former

5.0 Remarks on numerical results

In order to illustrate the foregoing analysis, tlhmmiform beam of length 12.20m considered.

Furthermore,i—‘] =2200m*/s*,N=2x10"m, = %ﬂ, X, = % and the ratio of the mass of the load
b

Journal of the Nigerian Association of Mathematical Physics, Volume 8, Novermber 2004.
Flexural motions under a concentrated mass tragellith variable velocity S T. Oni J. of NAMP



to the beam is 0.25. The transverse deflectionth@fbeam are calculated and plotted against time fo
various values of foundation constants (moduli) aridl force. Values of K between 0 N/and 400,000
N/m?were used while the values of N were varied betwehandN = 2,000,000.

Figure 5.1 displays the deflection profile of gimply supported beam under the action of forces
moving at variable speeds for various values ohftation moduliK for N = 200,000. The figure shows
that as K increases the deflection of the uniforarb decreases. The same results obtain when thé/sim
supported beam is traversed by a concentrated imagisig at variable speed as shown in Figure 5.40 Al
for various timet, the displacement of the beam for fixed K for was values of N are shown in Figure
5.2. It is shown that higher values of axial foregluce the displacement amplitudes of the beaitme T
same behavior characterizes the deflection profiklhe simply supported beam under concentrategesas
moving at variable speed for various values ofldgiae N for fixed foundation moduli as shown igure
5.5.

Finally, Figure 5.3 depicts the comparison of tteversed displacement of moving force and
moving mass cases for simply supported beam trestdrg a load moving at variable speedNor 20,000
andK = 4000. Clearly, the response amplitudes of mowivags is higher than that of the moving force.
This important result has also been reported ir2[BBnd 5] for cases when the traveling load isingpat
constant speed.

6.0 Conclusion

A closed form solution is presented for the disptaent response of a uniform beam under the actibas
concentrated mass moving with variable velocity.e Tholution technique, is based on integral
transformation, the expansion of the Dirac Deltacfion in Series form, a modification of Struble’s
asymptotic method and the use of the generatingtifumof the Bessel function. Numerical analysialso
carried out and the results show the following:

a) For the moving force and moving mass problems #éspanse amplitudes of the beam
traversed by a load moving with variable speedeaisa with an increase in the foundation constant K.

b) The critical speed for the system traversed by mgp¥orce is smaller than that under the
influence of moving mass.

C) Higher values of axial force N reduce the resparsplitudes of both moving force and

moving mass models.

d) The problem of a uniform beam under the actioha load moving with variable velocity, the

responses amplitude of the moving force probleemaller than that of the moving mass. This shdwas t
resonance is reached earlier in moving mass problem
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