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Abstract 
 

 This paper presents the dynamic analysis of the vibrations of a 
uniform beam under the action of a concentrated mass travelling with 
variable velocity.  The solution technique discussed involves the expansion of 
Dirac delta function in cosine series form, a modification of the Stumble’s 
asymptotic method and the use of the generating function of the Bessel 
function type.  Analytical solution are obtained and the numerical results in 
plotted curves show that for the moving force and moving mass problems, the 
response amplitudes of the bean traversed by a load moving with variable 
velocity decrease with an increase in the foundation constant K.  Similarly, 
the critical speed for the system traversed by a moving force is found to be 
smaller than that under the influence of moving mass showing that 
resonance is reached earlier in moving mass problem.  Also, the displacement 
amplitude of the moving mass is greater than of the moving force.  This 
further confirms the non-reliability of the moving force solution as safe 
approximation to the moving mass problem. 
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1.0 Introduction 

The problem of assessing the dynamic behaviour of structures carrying moving loads has been almost 
exclusively reversed in literature for moving loads moving at constant speeds.  Among these is the work of Stanisic et 
al [1], Milormir et al [2], Sadiku and Leipholz [3], Oni [4, 5], Gbadeyan and Oni [6] to mention a few. 

The more practical cases when velocities at which these loads move are no longer constants but vary with the 
time have received little attention in literature 97, 10].  This may be as a result of the complex space-time dependencies 
inherent in such problem.  Specifically, even when the inertia effects of the moving load are neglected analytical 
solutions involving integral transforms are both intractable and cumbersome.  However, such practical problems as 
acceleration and braking of automobile on roadways and highway bridges, taking off and landing of air-crafts on 
runway and braking and acceleration forces in the calculation of rails and railway bridges in which the motion is not 
uniform but a function of time have intensified the need for the study of the behaviour of structures under the action of 
loads moving with variable velocity.  The class of problems was first tackled by Lowan [8] who solved the problem of 
the transverse oscillations of beams under the action of moving variable loads.  Much later, Kokhmanyuk and Filippov 
[9] treated the dynamic effects on the transverse motion of a uniform beam of a load moving at variable speed.  The 
work of Gbadeyan and Aiyesimi [10] is a recent development in this area of study.  In particular, they undertook the 
analysis of the dynamic response of a finite beam continuously supported by a viscoelastic foundation to a moving load 
moving at variable speed.  It was found that the period of the resonating vibration decreases with increasing value of 
lateral frequency of the load.  However, in this work, the inertia effects of the moving load are assumed negligible and 
only the force solution is not an upper bound for the actual deflection of an elastic system. 

Thus, this work is concerned with the flexural motions of a uniform beam under the actions of a concentrated 
mass travelling with a variable velocity.  The main objective of this paper is to provide a closed form solution to this 
problem and to classify the effect of various parameters of the dynamical system on the response of the beam. 
 
2.0 Formulation of the initial boundary valve problem 

The undamped motion of a Bernoulli-Euler beam resting on an elastic foundation and under the action of a 
load moving with variable velocity is governed by the partial differential equation 
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where EJ is flexural rigidity of the beam, Na is the axial force, bµ  is the mass per unit length of the beam, K is the 

elastic foundation, U(x,t) is the transverse displacement, x and t are the spatial and time coordinates respectively, and 
Q(x,t) is the concentrated load moving with variable velocity.  The structure under consideration is simply supported 
and carrying a concentrated mss M, which is moving at variable velocity.  Consequently, the boundary conditions are 
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It is assumed that the initial conditions of the motion are  ( ) ( )
2

0
0

x

,xU
t,xU

∂
∂==  (2.3) 

 If we consider not only the force effects of the concentrated moving load but its inertial effects as well and 
the motion of the contact point of the moving load is given by  ( )tfX p =   (2.4) 

then according to d’Alemberts principle [7], the load is of the form 

   ( ) ( )( ) ( )












∂
−−∂=

2

2
1

1
t

t,xUd

g
ffxMgt,xQ

p
   (2.5) 

where the acceleration, 
( )

2

2

t

t,xUd p

∂
 of the mass is computed from the total differential of the second order of function 

U(x,t) with respect to t. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

22

2

22

2

2

2

2

2
dt

tf

x

t,xdU

dt

tf

x

t,xUd

dt

tf

tx

t,xUd

t

t,xUd

t

t,xUd p ∂
∂

+






 ∂
∂

+
∂

∂∂
+

∂
=

∂
 (2.6) 

If we take ( )tf  to be of the form  ( ) tsinxtf βΛ== 0    (2.7) 

where x0 is the equilibrium position of the longitudinally oscillating load, Λ  is the longitudinal amplitude of oscillation 
of the load and β  is the longitudinal frequency of the load equation (2.1) by virtue of (2.4) to (2.6) after some 

simplifications and rearrangements, becomes 
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3.0 Transformation of equation 

Equation (2.8) is a fourth order partial differential equation, which in addition to being singular has variable 
coefficients.  Firstly, by virtue of the boundary conditions the fourth order equation will be reduced to second order 
equation by applying the finite Fourier sine integral transform with respect to x.  The integral transform is defined as 
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Thus applying (3.1) to equation (2.8), one obtains 
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 Next, we evaluate the integrals in equations (3.4) to (3.7) To this end; use is made of argument 
similar to these in [1,5]. Thus, in equation (3.5), the property of the Dirac-delta function as an even function 
is used to express it in Fourier Cosine series given by  
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Carrying not the integration in (3.11) and (3.12) and simplifying, the desired transform is obtained as: 
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 Following similar argument as in the previous analysis, equation (3.5) becomes  









∑ ++∑

∧=
∞

=

∞

= 1
0

1
3

2
4

n
dc

n
tb I)tsinx(

L

n
cosI)t,k,j(Utcos

L

k
)kt,j(p ββπβπβ (3.14) 

where    dx
L

xm
sin

L

xk
cosI l

c

ππ
∫= 0     (3.15) 

dx
L

xj
sin

L

xk
cos

L

xn
cosI l

d

πππ
∫= 0

   (3.16) 

Evaluating Ic and Id, equation (3.14) after some simplifications and rearrangements yield  
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Equation (3.16), in the same vein leads to 
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The same argument leads to 
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where 
cI  and 

dI   are defined in (3.15) and (3.16). Consequently equation (3.21) leads to  
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where )k,j(S a  and )n,k,j(S b  are as defined in (3.18).  Using equation (3.13), (3.17), (3.20) and 

(3.22), equation (3.3) can be simplified and rearranged in the form  
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Equation (3.23) represents the transformed equation of uniform elastic beam under a load moving with a 
variable velocity. Evidently, an exact closed form solution to this equation is impossible. Consequently, in 
what follows two cases of the coupled equation are considered.  
(a) Moving Force 

If we neglect the inertia term, we the classical case of a moving force problem.  Under this 

assumption 00 =ε  and equation (3.24) after some simplifications and rearrangement becomes.  
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 Firstly, it is straight forward to show that the general solution of the homogenous part of (3.25) is 

given by;   tsinCtcosC)t,j(U jjc γγ 21 +=    (3.30) 

where 1C  and 2C  are constants.  Thus a particular solution to equation (3.25) takes the form  

  tsin)t(ptcos)t(p)t,j(U jjp λγ 21 +=    (3.31) 
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where r)t(p1  and )t(p2  are function to be determined. From equation (3.31), it is straight forward to 
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Using the Bessel relations in equation (3.27) and some trigonometric identities yields 
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 Using (3.34) and (3.35). The particular solution of the non-homogenous second order differential 
equation takes the form.  
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Consequently, )t,j(U)t,j(U)t,j(U nc +=      (3.38) 

Applying the initial conditions (2.3) to (3.28), the constants are found to be 
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 Substituting (3.39) and (3.40) into (3.38) and inverting after some simplifications and 
rearrangements yield  
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 Equation (3.41) is the displacement response of the beam due to the moving force. 
(b) Moving mass–entire equation 
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 If the moving load has mass commensurable with that of the elastic bam, the inertia effect of the 
moving mass is not negligible. Thus, 00 =ε  and we are required to solve the entire equation (3.23). This is 

termed the moving mass problem. Evidently, an exact closed form solution of this equation is not possible. 
Thus, we resort to the approximate analytical solution techniques which is a modification of the asymptotic 
method of Struble discussed extensively in [5] 
 First, equation (3.32) is rearranged to take the form  
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 By means of these techniques, one seeks the modified frequency corresponding to the frequency 
of the free system due to the presence of the moving mass. An equivalent free system operator defined by 
the modified frequency then replaces equation (3.4). Thus, we set the right hand side of (3.4) to zero and 

consider a parameter 11 <ε  for any arbitrary mass ratio0ε  defined as:  
0

0
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It follows that   )(o 2

10 εεε +=     (3.52) 

and 
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 When 1ε  is set to zero in equation (3.42), a situation corresponding to the case in which the 

inertial effect of the mass of the system is regarded as negligible is obtained. In such a lase the solution is 
of the form  
    )tcos(C)t,j(U jjsm φγ −= 0   (3.55) 

where lC γ0  and jφ  are constants.  Furthermore, as 11 <ε  Strubles technique requires that the solution 

of equation (3.42) be of the form ( )[ ] ( ) ( )2

111 0εµεψγθ ++−= t,jt,jcos)t,j()k,j(U j  (3.56) 

 Where ),( tjθ  and ),( tjψ  are slowly time varying functions. 

 In order to obtain the modified frequency, equation (3.6) is substituted into the homogenous part 
of equation (.3.42). Thereafter, we extract only the variational part of the4 equation describing the 
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Thus, solving equation (3.60) and (3.61) one obtains   
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where jφ  is a constant and therefore, when the effect of the mass of the particle is considered, the first 

approximation to the homogenous system is  )tcos(C)t,j(U jjm φγ −= 0   (3.64) 
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 is called the modified natural frequency representing the frequency of the free system due to the 
presence of the moving mass. Thus, the homogenous part of (3.45) can be written as: 
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and equation (3.45) then takes the form  

 )tsinx(
L

jsin
gL)t,j(U

dt

)t,j(Ud
jm βΛπεγ +=+ 01

2

2

2

  (3.67) 

 Evidently, this equation is analogues to equation (3.35). Applying the initial yield conditions and 
inverting yield;  
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4.0 Analysis of closed form solutions  
 The transverse displacement of an elastic beam may increase without bound. Thus one is 
interested in the resonance conditions. Equation (3.41) clearly depicts that the elastic beam resting on and 
elastic foundation and by a moving force will grow without bound whenever. 

   βγ kj 2=  and  βγ )k(j 12 +=   (4.1) 

 While equation (3.68) shows that the same beam under the action of a moving mass experiences 
resonance when 
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 Therefore, it is evident from (4.2) and (4.4) that for same natural frequency, the critical speed for 
the system consisting of an elastic beam resting on an elastic foundation and traversed by moving force 
with variable speed is smaller than that of moving mass problem. Hence resonance is reached earlier in the 
former 
 
5.0 Remarks on numerical results 
 
In order to illustrate the foregoing analysis, the uniform beam of length 12.20m considered. 

Furthermore,
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 and the ratio of the mass of the load 
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to the beam is 0.25. The transverse deflections of the beam are calculated and plotted against time for 
various values of foundation constants (moduli) and axial force. Values of K between 0 N/m3 and 400,000 
N/m3 were used while the values of N were varied between N=0 and N = 2,000,000. 
 Figure 5.1 displays the deflection profile of the simply supported beam under the action of forces 
moving at variable speeds for various values of foundation moduli K for N = 200,000.  The figure shows 
that as K increases the deflection of the uniform beam decreases. The same results obtain when the simply 
supported beam is traversed by a concentrated mass moving at variable speed as shown in Figure 5.4. Also 
for various time t, the displacement of the beam for fixed K for various values of N are shown in Figure 
5.2.  It is shown that higher values of axial force reduce the displacement amplitudes of the beam.  The 
same behavior characterizes the deflection profile of the simply supported beam under concentrated masses 
moving at variable speed for various values of axial force N for fixed foundation moduli as shown in figure 
5.5. 
 Finally, Figure 5.3 depicts the comparison of the traversed displacement of moving force and 
moving mass cases for simply supported beam traversed by a load moving at variable speed for N = 20,000 
and K = 4000.  Clearly, the response amplitudes of moving mass is higher than that of the moving force.  
This important result has also been reported in [1, 2, and 5] for cases when the traveling load is moving at 
constant speed. 
 
6.0 Conclusion 
A closed form solution is presented for the displacement response of a uniform beam under the actions of a 
concentrated mass moving with variable velocity. The solution technique, is based on integral 
transformation, the expansion of the Dirac Delta function in Series form, a modification of Struble’s 
asymptotic method and the use of the generating function of the Bessel function. Numerical analysis is also 
carried out and the results show the following: 
a) For the moving force and moving mass problems the response amplitudes of the beam 
traversed by a load moving with variable speed decrease with an increase in the foundation constant K. 
b) The critical speed for the system traversed by moving force is smaller than that under the 
influence of moving mass. 
c) Higher values of axial force N reduce the response amplitudes of both moving force and 
moving mass models. 
d) The problem of a uniform beam under the actions of a load moving with variable velocity, the 
responses amplitude of the moving force problem is smaller than that of the moving mass.  This shows that 
resonance is reached earlier in moving mass problem.  
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