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Abstract 
 

The crust is modelled as an elastic body, which is subjected to a 

vertical load.  The resulting deformation is analyzed.  Finally, an attempt 

is made to use the result to determine the time scale for isostatic 

adjustments for Hudson’s Bay ice sheet load. 
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1.0 Introduction 
One of the most interesting aspects of geophysics, and also unfortunately one of the least susceptible to 

theoretical description has to do with the deformation of the earth’s crust and upper mantle through geologic time.  The 
surficial features of these deformations and related processes are readily apparent in continents and ocean basins, island 
arcs and deep sea trenches, mountain ranges, volcanoes, mid-ocean ridges and the like.  Field geological and 
geophysical information adds a great deal more as to the structure, composition and geologic history of these features. 

Unfortunately, however, these deformations are not particularly susceptible to explanation by the present 
methods of theoretical physics.  The earth beneath the crust exhibits a complex response to impressed stresses.  For, 
example, the theory based on perfect elasticity adequately predicts observed effects.  In postglacial rise of areas, the 
effect is continuous long after the removal of the ice.  The explanation is that the material of the mantle reacts in 
different ways, depending   upon the time duration of the applied stress and also upon the magnitude of the stress [1]. 

The purpose of this paper is to investigate the deformation produced in the earth’s crust under a vertical load.  
In this paper, the crust is considered as an elastic body.  The result is applied to a crust, which has a size of the 
Hudson’s bay ice sheet.  
 

2.0 Mathematical formulation 
An incompressible half-space (Қ = ∞) of uniform density ρ and rigidity µ is subjected to a pressure 

( )ikxexpp  at the top surface.  We want to investigate the resulting deformation.  We shall designate the displacement 

components in the X, Y, and Z directions by u, v, w and we shall take the Z axis as vertical downward.  The problem 

will be restricted to a two-dimensional case, so that v  = 0, and 0=
∂
∂
y

v
. 

3.0 Theoretical analysis 
If E denotes Eulerian and L Lagrangian, then the equation of static equilibrium within an elastic plate subject 

to a uniform, vertical externally applied gravitational field and pre-stressed in a hydrostatic state can be expressed 

compactly as   wgPP LE

0011 ρ−=      (3.1) 
where P1 is  the  perturbation  pressure, ρo  is the density, go  is gravity and w is displacement. 

Since the analysis is restricted to an incompressible plate, the momentum balance equation is 
Eulerian, that is     02

1 =∇+∇− SPE µ    

 (3.2) 
where ∇  is the vector differential operator or del, V2 is the Laplacian and S is the displacement vector, that is; 

( )w,,uS 0= .and µ is the rigidity and it is the Lame constant.  The boundary conditions on z  = 0 are 
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(a)  when there  is  no  shear  stress;  ,
z

u

x

w
0=

∂
∂+

∂
∂

   (3.3) 

and 

 (b) the Lagrangian normal stress  ,Pe
z

w
P ikxL =

∂
∂

−
µ2

1    (3.4) 

Since the elastic plate is incompressible, its constitutive equations are [2]. 
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Here u and w denote displacement components in the x and z directions, respectively.  P is the elastic perturbation 
pressure.  For an incompressible elastic solid, it is defined by [3]. 
    ( )∆λ

∆
λ

0→
∞→

= limP      (3.6) 
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 is the dilation [3], λ is Lame constant.  Substituting  (3.6) into (3.5), the constitutive 

equations become ( ) ,
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Following [4] we introduce a displacement potential Х such that; 
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From the first and third of (3.7) we have solving for 
x

u

∂
∂

 and 
z

w

∂
∂

 the following relations  
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We derive from  (3.8) and  (3.7) using  (3.9) the following results: 
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 (3.10) 

Let     
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then the dot product  0=⋅∇ S satisfies the condition of incompressibility.  Therefore the left side of (3.10) reduces to   
zero.  In many problems in elasticity, it is convenient to assume that λ ═  µ.  This is the Poisson or Cauchy relation.  In 
our case here we shall take λ ═ − 1, and µ ═ 1 so as to obtain an analytic solution for the deformation.  Hence (3.10) 
becomes   

  
2

4

22

4

2

4

2
z

X

zx

X

x

X

∂
∂+

∂∂
∂+

∂
∂

    (3.12) 

(3.12) yields the bi-harmonic equation,  0
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In (3.13) we try the solution,   ( )( )2ikxezBAX −+=    (3.14) 

where A and B are constants determined to satisfy the boundary conditions in the usual way and k is the wave number.  

After some algebraic manipulations we obtain using (3.3), B = kA so that ( ) ikxkzeezkAX −−+= 1 .  Using (3.4) 

( )002 gkik

P
A

ρµ +
= .  We want 

x

X
w

∂
∂

−=  on z = 0.  ( )
002

0
gk

Pe
ikAw
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ρµ +
=−=   (3.15) 

The elastic deformation of the surface is given by (3.15) 
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4.0 Numerical example 
The above result will now be applied to the time scale for isosatic adjustment for a Hudson’s Bay ice sheet 

load for typical values of 00 g,,µρ and ν.  For Hudson’s Bay, 
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 which is small compared to 1.  So for Hudson’s Bay, the 

period τ is 
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τ years for 1022 poise.  The dependence on viscosity ν is linear. 
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