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1.0 Introduction.  
With a given approximate solution ξ  to a nonlinear system of equations we can 

construct bounds around nR∈ξ  for which it can be proved that there exists unique 

solution *x  such that ( ) 0=*xF . 
 We assume that our hypotheses are motivated by differentiability conditions on F  
and that the Jacobian det ( )( ) 0≠′ *xF . This means that ( )xF ′  is a continuously invertible 
linear operator for each x  and  
Sup ( )( ){ } 0for1 >∞<≤′ − r,rx:xF . 

 In this paper we construct a family of continuous hybrid methods that will be 
referred to as the q-step methods for the solution of nonlinear systems of equations.  Most 
nonlinear systems solvers use Newton methods, which can be written in the form  

( ) ( ) ( )( ) Λ,,k,xNxx kkk 101 =∩=+    (1.1) 
where the Newton operator N  is defined, for instance by  
    ( ) ( )xVFxxN −=      (1.2) 

and V  denotes the Jacobian matrix ( )( )[ ]1−′ kxF .  More definitive in our approach is that 
such evaluation of a related operator ( ) xxN ⊆  can be viewed as existence and uniqueness 
for ( ) 0=xF  in the interior 0Dx ∈ .  Practically, we compute a vector d  to contain the 
solution set to the linear system  

( )ξFAd −=      (1.3) 
where A is usually a lipschitz matrix for F  and x∈ξ  is a guess point.  The linear 
system (1.3) is well posed in the sense of Hadamard in that  

• the solution d  exists for each ( )ξF , 

• the solution is unique, and  
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• the solution depends continuously on the initial data.  
Let us note in passing that the uniqueness and verification of method (1.1) depends on the 
regularity of V  (see Ortega and Rheinboldt [4]). Fundamentally, we have  

Definition 1 

(Ortega and Rheinboldt [4]).  The operator N  in method (1.1) is called a 
P contraction if there exists a real matrix nnRP ×∈ , with spectral radius ( ) 1<Pρ  such that 

( ) ( )( ) ( )y,xpqyN,xNq ≤  where y,x  are in the interior of nRD ∈0 . 
 A promising strategy for the convergence of (1.1) is that it be norm reducing in 
the sense that  
     ( )( ) ( )1−≤ kk xFxF      (1.4) 

holds in some norm.  
Newton's method (1.1) can be modified for the linear system solvers (1.3).  Such 
philosophical consideration  
 
 
can be obtained by the use of Jacobi and gauss Siedel methods. This forms the plank of 
our consideration as discussed among others (Voigt [6, 7], More [3], Ortega and 
Rheinboldt [4] and Brent [1]). 

To motivate our interest, we organized the remaining sections in this paper as 
follows.  In section two, we reviewed the methods of linear iterative solvers -Jacobi, 
Gauss-Siedel as well as successive over relaxation parameter (S.O.R) methods. In 
particular, we paid special attentions to the computational aspect of the q-step method for 
the Newton-Jacobi operator equation since convergence of Gauss- Siedel or over 
relaxation parameter method is dependent on the convergence of Jacobi's method. In 
section three, we discussed our method with numerical example.  

 
2.0 Construction of Linear Iterative Solvers 
 Let ( )xFA ′=  be a non-singular matrix, then a linear system of equation  
    ( ) ( ) Λ,,m,xFAd km 10=−=     (2.1) 
with exact solution ( ) ( )( )km xFAd −= −1  can be obtained. We assume that there is a non-
singular matrix H  such that the matrix A  can admit the decomposition:  
     ( )AHHA −−=      (2.2) 
We introduce an iteration function of type  
    ( ) ( )mm dd Φ=+1  ΛΛ 1010 ,m,,,k ==   (2.3) 
from which we can write  
    ( ) ( ) ( ) ( )( )kmm xFdHAHd −=−++1 .    (2.4) 
Thus there follows ( ) ( ) ( ) ( )( )( )kmmm xFAdHdd +−= −+ 11 .  That is,  
    ( ) ( ) ( ) ( )( )kmm xFHdAHId 111 −−+ −−=   (2.5) 
Inview of (2.5), method (1.1) will be written as  
    ( ) ( ) ( ) ( ) Λ,,k,dxx mkkk 101 =+=+ λ    (2.6) 
where ( )kλ  is a descent direction, and is the spectral radius of the matrix whose  










−
= −− AHFH

W
11 1

01
    (2.7) 
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dominant eigenvalue is 1. Usually, we take 1=λ  an indication of the Brezis-Browder 
principle that provides abstract Newton Kantorovich scheme for solving system of 
nonlinear equations (of Ortega and Rheinboldt [4]).   
Different choices of H will lead to different iterative methods. Interestingly, cases occur 
if we take H  to be the diagonal or lower triangular part of A. Thus we will be led to the 
familiar Newton-Jacobi or Newton-Gauss-Siedel methods:  

    ( ) ( )( ) ( ) Λ,,m,daxF
a

d
n

ij
j

m

jij

k

ij

m

i 10
1

1

1 =













∑−−=

≠
=

+   (2.8) 

where ijij Aa ∈  and  

  ( ) ( )( ) ( ) ( ) Λ,,m,dddaxF
a

d
i

j
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ij
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jij

m

jij
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ij

m
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Using methods (2.8) and (2.9) the Newton operator expressed in (1.1) will now be written 
thus 

   ( ) ( ) ( )( ) ( )
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(Newton-Jacobi method) and  
( ) ( ) ( )( ) ( ) ( ) ΛΛ ,,m,,,k,dadaxF

a
xx
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(Newton-Gauss-Siedel Method). 
 Suppose instead we start the linear system (1.3) directly with the Gauss-Siedel 
method (2.11) and introduce the first components of auxiliary Vector iterates ( )md  in the 
form  

   
( ) ( ) ( ) ( )( )k

i

j

n

ij

m

jij

m

jij

m

ii xFdadada −∑ ∑−−=
−
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     (2.12) 

then the exact components ( )1+m

id  can be written in the form: 
 
 

 ( ) ( ) ( ) ( ){ }m

i

m

i
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1 ω ( ) ( ) ( )1

1
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m

i
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We call ω  the relaxation parameter.  If we plug equations (2.12) and (2.13) together, we 
have  

  ( ) ( ) ( ) ( ) ( ) ( )( )
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As a follow up in this consideration, we wish to construct q-step-methods for Newton-
Jacobi operator equations. The relevant details can be obtained from the pioneering work 
of Wang and WU [8] see also [5]. Hence we have the algorithm in the form  

( )( )
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and  
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    (2.16)  

( ),,k,,m,q,,,,,q ΛΛΛΛ 10101102 ==−== λ . 
The most favourable choice for the value of q is 2.  
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3.0 Numerical results.  
  Consider the test problem 1  (Burden and Fairs [2]) 

( ) 0
2

1
3 321 =−− xxcosx , ( ) 00611081 3

2

2
2
1 =+++− .sinx.xx , 0

3

310
20 3

21 =−++− π
xe

xx , Then 

( ) ( )1010100 .,.,.x −= .  ( )
( ) ( )
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−
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3
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32

322323

xx
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ex
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Table 1 shows the numerical result for the methods. 

 

No. of 
iterations k 

Newton-Jacobi 
Operator (2.10) 

q-step 
Newton-
Jacobi 

Operator 
(2.15) 

q-Step-Newton-
Gauss-Siedel 

Operator (2.16) 

0 (0.1, 0.1, -0.1) (0.1, 0.1, -
0.1) 

(0.1, 0.1, -0.1) 

 
1 

0.500002898 
0.022430579 
-0.521505141 

0.49999819
4 

0.02253291
1 
-

0.52150468
0 

0.499998194 
0.022430546 
-0.521505164 

 
2 

0.499999836 
0.026805394 
-0.523076442 

0.49999986
5 

0.02677556
2 
-

0.52293372
8 

0.499999853 
0.026779265 
-0.522933639 

 
3 

0.499999993 
0.026736944 
-0.522905029 

0.49999999
1 

0.02677315
0 
-

0.52293390
7 

0.599999991 
0.026773133 
-0.522933907 

 
4 

0.499999972 
0.026727274 
-0.522934809 

 
5 

0.4499998442 
0.026728716 
-0.522935075 
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Table 2  Shows numerical values of ( )( )kxF  

No. of 
iterations 

( )k  

Newton-
Jacobi 
Operator 
(2.10) 

( )( )kxF  

q-Step Newton-
Jacobi Operator  
(2.15)  

( )( )kxF  

q-Step-Newton-
Gauss-Siedel 
Operator (2.16) 

( )( )kxF  

 
0 

-
1.199999985 

-
2.171745328 
8.462025346 

-1.199999985 
-2.171745328 
8.0462025346 

-1.199999985 
-2.171745328 
8.462025346 

 
1 

0.000008714 
0.086772061 
0.030719995 

-0.0000054 
0.085647052 
0.030678724 

-0.000005401 
0.087678175 
0.030719655 

 
2 

-
0.000000462 

-
0.001577687 

-
0.003430003 

-0.000000380 
0.000049759 
0.000002391 

-0.000000416 
-0.000125822 
0.000002345 

 
3 

0.000000062 
0.000168785 
0.000595421 

-0.000000002 
-0.000000099 
-0.000000001 

0.000000002 
0.000000249 
0.000000006 

 
4 

-
0.000000054 
0.000029205 
0.000004591 

 

 
4.0 Conclusion. 

From Table 1, it is evident that the numerical results obtained from problem 1 are 
reasonably good enough to the requested zeros for ( )xF . This is corroborated from Table 
2.  It is quite glaring to note that the q-step Newton-Jacobi's operator equation (2.15) 
performed substantially better than the Classical Newton Jacobi's method (2.10).  It is 
also not known from the computational experience if the q-step Newton-Gauss-Siedel 
method (2.16) has any computational advantage over the q-step Newton-Jacobi's method. 

The great consolation we have is potentiated with the fact that both q-step 
methods of Newton-Jacobi and Newton-Gauss-Siedel performed acceleratively better 
than the classical Newton Jacobi's method and they mapped the convex, compact set 
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nRx ∈  into itself as evidenced by the Schauder fixed point theorem (or a similar weaker 
assumption such as Miranker's theorem).  The continuity of these methods follows from 
that of F .  Because of the non-singularity of the Jacobian matrix, a fixed point of ( )xN  in 
method (1.1) is a solution of ( ) ⋅= 0xF   
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