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Abstract

In an earlier paper we derived Einstein’s geometigravitational
field equations for the metric tensor due to an at# spheroidal massive
body. In this paper we derive the corresponding &iein’'s equations of
motion for a test particle of nonzero rest mass ftine gravitational field
exterior to a homogeneous oblate spheroidal massbagly, expressed in
oblate spheroidal coordinates convenient for mathetimal investigation and
hence physical interpretation and experimental irstigation for bodies in the
solar system.
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1.0 Introduction
It is well known how to formulate and solve Einstsigeometrical equations of motion for test
particles of nonzero rest masses in the gravitatifields of massive spherical bodies. These eqosti
popularly known as the Schwarzchild’'s geodesic #guns, are given in the spherical polar coordinates

(r,6,9) with origin at the centre of the body, by &-f—kz(l— 22k j 8&=0 (1.1
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&%@Lsinecos&ﬁ =0 (1.2)
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2k

R ok o G ORE R
r cr c’r cr cr

where k=GM, (1.5)

and M, is the rest mass of the body and G is the uniVenrsevitational constant. These equations have
hitherto constituted the basis of the study ofrtiegions of planets around their stars and artifiséellites
and projectiles in the earth’s atmosphere accorttiri§jnstein’s geometrical theory of gravitatiorokn as
general relativity. But it is now well known expmentally that the earth and all the other planstwell as
the sun are spheroidal in shpe Therefore treating them as perfect spheres lsit an approximation
for the sake of mathematical convenience. Moreospheroidal shape of a body will produce some
corresponding non-spherical effects in the motiwiest particles in its gravitational field. Théme there
has remained the need to extend the theory of matiche Solar System from the fields of bodies of
perfect spherical geometry to those of spheroigalnetry. And towards this goal we recently derived
Einstein’'s geometrical field equations in the sptwe due to an oblate spheroidal massive body.
Therefore in this paper we derive and solve Eingegjeometrical equations of motion for test p&etdn
general form in the field of a homogeneous oblpteesoidal massive body.
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2.0 Equations of motion
In a recent paper we deriVedinstein’s geometrical gravitation metric tensotteeior to a
homogeneous oblate spheroidal body, in the obfdtersidal coordinateé7,{,¢) with origin at the centre

of the body as 9o (/7,{,40) =e”" (2.1)
9.(7.6,.9)=—€° 2.2)
J2 (’7'{'¢) =-e" (2-3)
05 (7.6,9)= -2’ (=" Ja+ &°) (2.4)

whereF, G andH are functions of the oblate spheroidal coordindjesd & only, and their equations are
known'. But Einstein’s geometrical equations of motinmgiavitational fields are given by
Xy O (2.5)

dr® “ dr dr

where T is proper time and” u‘\’) are the Riemann Christofel symblpland x° are the coordinates of space

- time. In the oblate spheroidal coordinates witigin at the centre of the body

x°® =ct (2.6)
x'=n 2.7)
xt=£& (2.8)
xX*=g (2.9)
wheret is coordinate time and the connection coefficiemésgiven in [1]" by
fo‘i=fo‘i=%Fn (2.10)
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rziz/'si:lﬂ& (2.23)

r,5 =0, otherwise (2.24)

It therefore follows from (2.5) and (2.10) — (1.24t 0=8+F &gF &8 (2.25)
2

and O=@—%eG’FF”—F5& —%anﬁ -G, f&+ a2/7(1+<‘2)e‘3<§2 (2.26)

and O=§L%c2e“'FF‘,'& +%e“‘GG‘,/¢Z—quﬂghaz(lﬂf)fe“& (2.27)

and 0= & ,&54 2 &8 (2.28)

1+ &2
The results (2.25) - (2.28) are the exact equatidrmaotion for a test particle in the gravitatiorii@ld of
homogeneous oblate spheroidal body according tsté&imis geometrical laws of General Relativity.

3.0 General Azimuthal solution
Dividing through the azimuthal equation of moti@29) by @and integrating it follows that
-1
1
#n.c.0) —;(1 ) (1+;j (3.1)

where A is a constant of the motion defining to the angmamentum per unit rest mass.

4.0 Solutions in the equatorial plane
For motion confined to the equatorial plane ofltbdy,

n=0 (4.2)
Consequently the time equation (2.25) reduces to

0= f'(5)8B (4.2)
where f(&)=F(7.6),- - (4.3)
This equation integrates exactly to yield the sotut

8= Aexd f (&)} (4.4)
where A is an arbitrary constant. But by defimitio

&.1as é - o (4.5)
and hence A=exd- f (&) .. (4.6)
In the second place in the equatorial plane that&ejuof motion in theﬁ direction (2.26) reduces to

F,07.6),.=0 @.7)

In the third place in the equatorial plane the aghmal solution (3.1) reduces to

&:L(HLJ (4.8)

gL &
In the fourth place in the equatorial plane theatipm of motion in the@direction (2.27) subject to (4.4)
and (4.8) yields @_—(ug—] exdh(& )}+2c A%f(&)exd f(&)+n(&)]  (4.9)
where ({): H (/7,{) |”=0 (4.10)

In principle the results (4.9), (4.8) and (4.4) stitnte a sufficient solution of motion in the
equatorial plane in terms of the radial coordindte But it may be most interesting and instructive t
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express the motion in terms of the angular cootdirf@. Towards this goal leti be the reciprocal
“distance” defined by
1
ulg) ==~ (4.11)
éo)
Then it follows from (4.9) that
. d 1 du
=-1*u*{l+u®) —<Q+u?) — 4.12
Berruren) ) ) @12
Consequently, (4.9) becomes

u2(1+u2)_2d%p{(hm)‘l:_;}:_)\izus(lwz)-z exp{f(é)}

(4.13)

or equivalently,

3;‘: - 2u(1+ u? )z[j—zj = —)\—el u exp{h(%j} +% c2A? (1+ u—lzj f G] exp{ f G] + h(%j} (4.14)

This is the planetary equation in the equatoriahplof a homogeneous oblate spheroidal body aceptdi
Eisnstein’s geometrical laws of General Relativityis therefore now opened up for comparison \iliid
well-known Einstein’s planetary equation in thddief a homogeneous spherical massive body.

5.0 Summary and conclusion

In this paper we derived Einstein’s geometrical a¢qun of motion for a test particle in the
gravitational field of a homogeneous oblate spliiomassive body. Then we showed how they may be
solved exactly and analytically for motions conéirte the equatorial plane.

It is most interesting and instructive to notet tiee planetary equation (4.14) contains at least o
term of orde® corresponding to orbital precession.

It is most interesting and instructive to note tRatstein’s planetary equation (4.14) derived in
this paper contains infinitely many pure spheroi(fadn-spherical) terms and hence effects which are
henceforth opened up for mathematical analysispduydical experimental and investigation in the i
of the planets, comets and asteroids in the Sgistes.

The door is now opened for the mathematical aisabfsEinstein’s equations of motion for a test
particle in the gravitational field exterior to @rhogeneous oblate spheroidal massive body for more
general motions other than the one confined tethatorial plane of the body.

Finally it may be noted that Einstein's geomelriequations of motion for test particles in the
gravitational field of a homogeneous oblate sphisiobody derived in this paper may now be compared
with the corresponding Newton’s dynamical equatiohsiotion derived by us in a recent pdfer
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