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                                                        Abstract 
 

 In an earlier paper we derived Einstein’s geometrical gravitational 
field equations for the metric tensor due to an oblate spheroidal massive 
body. In this paper we derive the corresponding Einstein’s equations of 
motion for a test particle of nonzero rest mass in the gravitational field 
exterior to a homogeneous oblate spheroidal massive body, expressed in 
oblate spheroidal coordinates convenient for mathematical investigation and 
hence physical interpretation and experimental investigation for bodies in the 
solar system.  
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1.0  Introduction  

It is well known how to formulate and solve Einstein’s geometrical equations of motion for test 
particles of nonzero rest masses in the gravitational fields of massive spherical bodies. These equations, 
popularly known as the Schwarzchild’s geodesic equations, are given in the spherical polar coordinates 

( )φθ ,,r  with origin at the centre of the body, by    0
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where      0GMk =     (1.5) 
and Mo is the rest mass of the body and G is the universal gravitational constant. These equations have 
hitherto constituted the basis of the study of the motions of planets around their stars and artificial satellites 
and projectiles in the earth’s atmosphere according to Einstein’s geometrical theory of gravitation known as 
general relativity. But it is now well known experimentally that the earth and all the other planets as well as 
the sun are spheroidal in shape4-9.  Therefore treating them as perfect spheres is at best an approximation 
for the sake of mathematical convenience. Moreover, spheroidal shape of a body will produce some 
corresponding non-spherical effects in the motions of test particles in its gravitational field. Therefore there 
has remained the need to extend the theory of motion in the Solar System from the fields of bodies of 
perfect spherical geometry to those of spheroidal geometry. And towards this goal we recently derived1.   

Einstein’s geometrical field equations in the space-time due to an oblate spheroidal massive body.  
Therefore in this paper we derive and solve Einstein’s geometrical equations of motion for test particles in 
general form in the field of a homogeneous oblate spheroidal massive body.  
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2.0 Equations of motion  
In a recent paper we derived1 Einstein’s geometrical gravitation metric tensor exterior to a 

homogeneous oblate spheroidal body, in the oblate spheroidal coordinates ( )φξη ,,  with origin at the centre 

of the body as    ( ) Fe,,g −=φξη00      (2.1) 

( ) Ge,,g −−=φξη11     (2.2) 

( ) He,,g −−=φξη22     (2.3) 
 
 

 
 

( ) ( )( )222
33 11 ξηφξη +−−= a,,g    (2.4) 

where F, G and H are functions of the oblate spheroidal coordinates ηand ξ only, and their equations are 

known1.  But Einstein’s geometrical equations of motion in gravitational fields are given by  
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where τ  is proper time and α
µνΓ  are the Riemann Christofel symbols1, and αx  are the coordinates of space 

- time.  In the oblate spheroidal coordinates with origin at the centre of the body  
ctx =0       (2.6) 

η=1x       (2.7) 

ξ=2x       (2.8) 

φ=3x       (2.9) 

where t is coordinate time and the connection coefficients are given in [1]` by  
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The results (2.25) - (2.28) are the exact equations of motion for a test particle in the gravitational field of 
homogeneous oblate spheroidal body according to Einstein’s geometrical laws of General Relativity.  
 
3.0 General Azimuthal solution  

Dividing through the azimuthal equation of motion (2.29) by φ&and integrating it follows that  
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where λ is a constant of the motion defining to the angular momentum per unit rest mass.  
 
4.0 Solutions in the equatorial plane 

For motion confined to the equatorial plane of the body,  
0≡η      (4.1) 

Consequently the time equation (2.25) reduces to  

( ) tft &&&& ξξ′−=0     (4.2) 

where      ( ) ( ) 0== ηξηξ ,Ff .     (4.3) 

This equation integrates exactly to yield the solution  
( ){ }ξfexpAt =&     (4.4) 

where A is an arbitrary constant.  But by definition  
∞→→ ξast 1&    (4.5) 

and hence     ( ){ } ∞=−= ξξfexpA    (4.6) 

In the second place in the equatorial plane the equation of motion in the η̂  direction (2.26) reduces to  

( ) 00 ≡=ηη ξη ,F     (4.7) 

In the third place in the equatorial plane the azimuthal solution (3.1) reduces to  
1
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In the fourth place in the equatorial plane the equation of motion in the ξ̂ direction (2.27) subject to (4.4) 
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where      ( ) ( ) 0== ηξηξ ,Hh    (4.10) 

In principle the results (4.9), (4.8) and (4.4) constitute a sufficient solution of motion in the 
equatorial plane in terms of the radial coordinate ξ .  But it may be most interesting and instructive to 



Journal of the Association of Mathematical Physics, Volume 8, November 2004 
Motion in the gravitational field of an oblate spheriodal body S. X. K. Howusu J. of NAMP 

express the motion in terms of the angular coordinate φ .  Towards this goal let u be the reciprocal 

“distance” defined by  

( ) ( )φξ
φ 1=u     (4.11) 

Then it follows from (4.9) that   

( ) ( )








++−= −−

φφ
ξ

d

du
u

d

d
uul

121222 11&&   (4.12) 

Consequently, (4.9) becomes  
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or equivalently, 
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This is the planetary equation in the equatorial plane of a homogeneous oblate spheroidal body according to 
Eisnstein’s geometrical laws of General Relativity. It is therefore now opened up for comparison with the 
well-known Einstein’s planetary equation in the field of a homogeneous spherical massive body. 
 
5.0 Summary and conclusion 

In this paper we derived Einstein’s geometrical equation of motion for a test particle in the 
gravitational field of a homogeneous oblate spheroidal massive body. Then we showed how they may be 
solved exactly and analytically for motions confined to the equatorial plane.  
 It is most interesting and instructive to note that the planetary equation (4.14) contains at least one 
term of order u3 corresponding to orbital precession.  

It is most interesting and instructive to note that Einstein’s planetary equation (4.14) derived in 
this paper contains infinitely many pure spheroidal (non-spherical) terms and hence effects which are 
henceforth opened up for mathematical analysis and physical experimental and investigation in the motions 
of the planets, comets and asteroids in the Solar System.  
 The door is now opened for the mathematical analysis of Einstein’s equations of motion for a test 
particle in the gravitational field exterior to a homogeneous oblate spheroidal massive body for more 
general motions other than the one confined to the equatorial plane of the body.  
 Finally it may be noted that Einstein’s geometrical equations of motion for test particles in the 
gravitational field of a homogeneous oblate spheroidal body derived in this paper may now be compared 
with the corresponding Newton’s dynamical equations of motion derived by us in a recent paper10.  
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