On the theory of pre-p-nil-rings

Adewale Oladipo Oduwale
Department of Mathematics, University of Benin,
Benin City, Nigeria.
e-mail:askforadewale@yahoo.com

Abstract

C_Abstrat Generalizing the concept of p-rings, Abian and Mcworter [1] call an associative and commutative ring \mathfrak{R} with characteristic p a pre-p-ring if $x y^{p}=x^{p} y$ for every x and y in \mathfrak{R}. It was proved in [1] that every pre-pring \mathfrak{R} is a direct sum $R=B \oplus N$ of a p-ring B and a nil ring N, where even $x^{p+2}=0$ for every $x \in \mathrm{~N}$. It was also proved in [1] that N is the radical of R and hence N uniquely determined by R. Moreover, it is not difficult to show that B is also uniquely determined by R. A simple calculation shows that the converse that the direct sum $R=B \oplus N$ of $a p$ ring B and a pre-p-nil-ring N is a pre-p-ring. Since the structure of p-rings is known, there remains to investigate only the pre-p-nil-rings, which is the purpose of this paper.

Keywords: isomorphic, irreducibility, sub-directly, direct, annihilator
pp 273-276

1.0 Introduction

First, we determine the pre-p-nil-rings as certain algebras over the prime filed F_{p} of characteristic p. Many pre- p-nil-rings, which may be generated by one element, arise as semi group rings or as semi group rings with a factor system of F_{p}, but this is not true for all pre-p-nil-rings. In the second part, we deal with sub-direct decompositions of pre-p-nil-rings. We recall that every p-ring is sub-direct sum and in the finite case even a direct sum of prime fields F_{p}, [4], [5]; in particular, every sub-directly irreducible p-ring is isomorphic to F_{p}. Just so every pre-p-nil-ring is a sub-direct sum of sub-directly irreducible pre-p-nilrings. But here we have for every characteristic p even an infinite number of sub-directly irreducible pre- p -nil-rings (likewise of finite as of infinite order), which are not isomorphic. Another contrast to the situation with p-rings is the existence of the finite pre-p-nil-rings, which are sub-directly reducible although they have no decomposition into a direct sum. Finally, for the sub-direct irreducibility of a pre- p-nil-ring N, it is necessary (Theorem 4) and in the finite case necessary and sufficient (Theorem 5), that the annihilator of N be a principal ideal different form zero (0).

2.0 An Algebra over $\boldsymbol{F}_{\boldsymbol{p}}$

By an algebra over F_{p}, we mean in the following a ring R (for our purposes always associative and commutative), which is also a vector space over the prime field F_{p} of characteristic p. Hence every element of R may be written uniquely in the form

$$
\begin{equation*}
\sum_{i \in I} a_{i} w_{i}, a_{i} \in F_{p}, \text { only a finite number } a_{i} \neq 0 \tag{2.1}
\end{equation*}
$$

by the help of a basis $\left\{w_{i}\right\} \subseteq R$, where I is an index system of an arbitrary cardinal number.
Theorem 1
Let R be an algebra over F_{p} with a basis $\left\{w_{i}\right\}$ having the following properties:

$$
\begin{equation*}
w_{i} w_{i}^{p}=w_{i}^{p} w_{j} \text { for every } w_{i} \text { and } w_{j} \tag{a}
\end{equation*}
$$

(b) For every w_{i} there is a (minimal) natural number $t=t\left(w_{i}\right) \geq 2$ with $w_{i}^{t}=0$.

Then R is a pre-p-nil-ring and, conversely, every pre-p-nil-ring N is an algebra of this kind.
We note that (a) and (b) imply $t\left(w_{i}\right) \leq p+2$ for every w_{i} (see the proof of Lemma 1 in [1]), whereas conversely (a) is trivial if (b) always holds with $t\left(w_{i}\right) \leq p$.

Proof
By well-known rules for characteristics p we have for arbitrary elements (1) of the algebra R

$$
\begin{gathered}
\left(\sum a_{i} w_{i}\right)^{p 2}=\sum a_{i} w_{i}^{p 2}=0, \\
\left(\sum a_{i} w_{i}\right)\left(\sum b_{j} w_{j}\right)^{p}=\sum a_{i} b_{j} w_{i} w_{j}^{p}=\sum_{j}^{a_{i} b_{j} w_{i}^{p} w}=\left(\sum a_{i} w_{i}\right)^{p}\left(\sum b_{j} w_{j}\right) .
\end{gathered}
$$

Hence R is a pre-p-nil-ring. Conversely, every pre-p-nil-ring N obviously is a unitary F_{p}-module and therefore a vector over F_{p} with a basis $\left\{w_{i}\right\} \subseteq N$. Now, (a) and (b) are true even for all elements of N.

3.0 Commutativity Semigroup with zero, 0

With the aid of this theorem many pre-p-nil-rings may easily be given. For example, one starts with a commutative semigroup $H=\left\{0, w_{i}\right\}, i \in I$ with zero 0 , which satisfies (a) and (b), and takes $\left\{w_{i}\right\}=H \backslash\{0\}$ with the multiplication determined by H as basis of an algebra R over F_{p}. Such an algebra R is what we call here the semigroup ring of H over F_{p}. More precisely, in a first step one has to take also $0 \in H$ as a basis element of an algebra R^{*} over F_{p}, where $0 \neq 0^{*}$ for the zero 0^{*} of R^{*}. The considered ring R then arises by "identifying" of these zeros, that is, as residue class ring $\frac{R=R^{*}}{\left(0-0^{*}\right)}$ of R^{*} modulo the ideal $\left(0-0^{*}\right)$; [6]. If we choose

$$
\begin{equation*}
H=\left\{w, w^{2}, \Lambda, w^{t-1}, w^{t}=w^{t+1}=\Lambda=0\right\} \quad 2 \leq t \leq p+2 \tag{3.1}
\end{equation*}
$$

is the cyclic semigroup of order t and period 1 [2], (a) and (b) hold and we have

Theorem 2

Every pre-p-nil-ring N, which is generated by one element, is a semgroup ring R of a cyclic semigroup H of period 1 and order $t(2 \leq t \leq p+2)$ over F_{p} and conversely. Hence for a fixed characteristic p there exist exactly p +1 pre-p-nil-rings (up to isomorphism), generated by one element.

Proof
From the text above, it is clear that R is a pre-p-nil-ring, generated by the element w. Conversely, let w be a generating element of a pre- p-nil-ring N. Then all the powers of w form sub-semigroup (2) of N, and for the semigroup ring R of H over $F p$ we have $R \subseteq N$, from which by assumption $R=N$.

Let again $H=\left\{0, w_{i}\right\}$ be a (commutative) semigroup with zero 0 . We say that R is a semigroup ring of H over F_{p} with a factor system $\left\{c_{w_{i}, w_{j}}\right\}$ if R is an algebra over F_{p} with the basis $\left\{w_{i}\right\}$, for which multiplication is defined by

$$
w_{i} \mathrm{O} w_{j}=c_{w_{i}, w_{j}} w_{i} w_{j}, \quad c_{w_{i}, w_{j}} \in F_{p}
$$

(3.2)
(Here we have also identified the zeros as explained in the paragraph preceding Theorem 2. Hence the values of the factors $c_{w_{i}, w_{j}}$ for $w_{i} w_{j}=0$ are irrelevant and may be chosen arbitrarily).

It is known that R is associative if and only if [6] $c_{w_{i}, w_{j}} c_{w_{i} w_{j}, w_{k}}=c_{w_{i}, w_{j} w_{k}} c_{w_{j}, w_{k}}$ for $w_{i} w_{j} w_{k} \neq 0$, whereas commutativity is preserved if and only if

$$
\begin{equation*}
c_{w_{i}, w_{j}}=c_{w_{j i} w_{j}} \text { for } w_{i} w_{j} \neq 0 \tag{3.4}
\end{equation*}
$$

The special case $c_{w_{i}, w_{j}}=1 \in F_{p}$ for w_{i}, w_{j} corresponds to the semigroup ring in the above sense.

Theorem 3

Let $H=\left\{0, w_{i}\right\}$ be a commutative semigroup with zero 0 , which satisfies (a) and (b). Then every semigroup ring R of H over F_{p} with a factor system $\left\{c_{w_{i}, w_{l}}\right\}$ is a pre-p-nil-ring, if $c_{w_{i}, w_{j}} \neq 0$, for $w_{i}^{2} \neq 0$.
(This condition is superfluous if $t\left(w_{i}\right) \leq p$ for every $w_{i} \in H$. On the other hand, it means no loss of generality, because all semigroup rings with factor systems (yet even all monomial algebras, [7]) are included, if one only considers factor systems with $c_{w_{i}, w_{j}}=0 \Leftrightarrow w_{i} w_{j}=0$.)

Proof
From $w_{i}^{t}=0$, it follows immediately that $w_{i} 0 \wedge 03^{w_{i}}=c_{w_{i} w_{i}}^{t-1} w_{i}^{t}=0$. Moreover, the property (a) of the multiplication (\cdot) of the w_{i} carries over the multiplication O according to

This is not trivial only in the case $w_{i} w_{j}^{p}=w_{i}^{p} w_{j} \neq 0$ and $c_{w_{i} w_{j}}=0$. But then, by assumption, $c_{w_{i} w_{i}} \neq 0$ and $c_{w_{j} w_{j}} \neq 0$; hence the $(p-1)-$ th powers of these factors are equal to $1 \in F_{p}$. Therefore R is a pre- p-nil ring by Theorem 1 .

We note at once that not all pre-p-nil-rings, not even those, which are finite or sub-directly irreducible, arise as semigroup rings with a factor system according to Theorem 3 (hence also not as monomial algebras, [7]). We restrict ourselves to a simple counter-example for characteristic $p=2$ and consider the algebra $N=R$ over F_{2} with the basis $\left\{u, u^{2}, v, v^{2}, q\right\}$ and the multiplication table

	u	u^{2}	v	v^{2}	q
u	u^{2}	0	$u^{2}+v^{2}$	q	0
u^{2}	0	0	q	0	0
v	$u^{2}+v^{2}$	q	v^{2}	0	0
v^{2}	q	0	0	0	0
q	0	0	0	0	0

It is easy to see that by Theorem $1 R$ is a pre-2-nil-ring. But it is impossible to choose a basis $\left\{w_{1}, \Lambda, w_{5}\right\} \subseteq R$ in such a way that for every w_{i}, w_{j} the product $w_{i} w_{j}$ is a multiple of one of the elements of this basis (that is, here of course equal to zero or to the basis element itself, since we have F_{2} as operator domain). In order to prove this assertion, we observe first that in each basis there must be two elements w_{1} and w_{2} such that the terms u or $u+v$ occur in w_{1} and v or $u+v$ occur in w_{2} (and of course not $u+v$ in both). Then we get from

$$
\begin{equation*}
w_{1}^{2}, w_{2}^{2}, w_{1} w_{2}, w_{1} w_{2}^{2}=w_{1}^{2} w_{2} \tag{3.5}
\end{equation*}
$$

up to the order of succession the four linearly dependent elements u^{2} or $u^{2}+q, v^{2}$ or $v^{2}+q, u^{2}+q, u^{2}+v^{2}$ or $u^{2}+v^{2}+q, q$ which cannot be obtained in the basis $\left\{w_{i}\right\}$.

4.0 Decomposition of pre-p-nil rings

The considerations of this section concerning the decomposition of pre-p-nil-rings as sub-direct sums (for he concepts and properties of sums, used in the following, [4]) are based on the following

Preposition 1

Every pre-p-nil-ring N is isomorphic to a sub-direct sum of sub-directly irreducible pre-p-nilrings N_{i}, and conversely every sub-direct sum of pre-p-nil-rings is again a pre-p-nil ring.

The first part is an immediate consequence of the fact that a homomorphic image of a pre-p-nilring is also one. For the second, it suffices to show that the direct sum of pre-p-nil-rings N_{i} is also a pre-pnil ring, which follows essentially from $x_{i}^{p+2}=0$ for every x_{i} of each pre-p-nil-ring N_{i}.

Therefore our main interest is the study of sub-directly irreducible pre-p-nil-rings. As already mentioned in the introduction, the situation is here much more complicated than for p-rings, but, some information is given in what follows, where the annihilator Q of N, that is, the ideal of all elements $q \in N$ with $q x=0$ for every $x \in N$, is of some importance.

Theorem 4

Every sub-directly irreducible pre-p-nil-ring N has an annihilator $Q \neq(0)$, which is a principal ideal of N and hence it consists of exactly p elements $q, 2 q, \Lambda, p q=0$

This assertion is even true for nilpotent rings with characteristic p and is a special case of Theorem 2 of [3].

We give first an example of pre-p-nil-ring without an annihilator $(\neq 0)$, which is then sub-directly reducible by Theorem 4. Let H be the commutative semigroup with zero 0 , generated by the (countable) infinite set of elements u_{1}, u_{2}, Λ, with the defining relations

$$
\begin{equation*}
u_{i}^{2}=0 \quad \text { for every } i \tag{4.1}
\end{equation*}
$$

Then every nonzero element of H has a unique representation

$$
\begin{equation*}
u_{k_{1}} u_{k_{2}} \Lambda u_{k_{m}} \text { with } k_{1} \pi k_{2} \pi \Lambda \pi k_{m} \tag{4.2}
\end{equation*}
$$

Now we regard the semigroup ring N of H over F_{p} (with arbitrary characteristic p), which is according to Section 1 a pre-p-nil-ring. This ring N has only the zero as annihilator; hence it is a ring of the desired kind. Indeed, every element $x \neq 0$ of N is a linear combination of a finite number of elements (4.2), and we have $x u_{j} \neq 0$ for every j greater than all the indices k_{m} of the factors $u_{k_{m}}$, which occur in the terms of x.

By the help of this example, we see that the converse of Theorem 4 is false. For this purpose we take the direct sum $N \oplus Q$ of N with a zero-ring Q of p elements. Then $N \oplus Q$ is a pre- p-nil-ring with principal ideal $Q \neq(0)$ as annihilator, though it is subdirectly reducible. But we have

Theorem 5

A finite pre-p-nil-ring N always has an annihilator $Q \neq(0)$ and it is subdirectly irreducible if and only if Q is a principal ideal.

Proof
For the first assertion we take an arbitrary element $x_{1} \neq 0$ of N. Neither we have $x_{1} x_{2} \neq 0$ for every $x_{2} \in N$, or there is an element $x_{2} \in N$ with $x_{1} x_{2} \neq 0$. In the same manner we regard $\left(x_{1} x_{2}\right) x_{3}$ and so on. Since N is finite and every element of N is nilpotent, we obtain in this way an annihilator element $q=x_{1} x_{2} \Lambda x_{n} \neq 0$. Hence $Q \neq(0)$. Moreover, it follows from this consideration, that every ideal $A \neq(0)$ of N contains at least one annihilator element $q \neq 0$. Therefore the intersection of all ideals $A \neq(0)$ of N contains Q and hence N is subdirectly irreducible. If the latter is true, then Q is a principal ideal by Theorem 4.

Corollary 1

Every pre-p-nil-ring N, generated by one element w, is subdirectly irreducible.

Proof

According to Theorem 2, N is the semigroup ring of the semigroup $w, w^{2}, \Lambda, w^{t(w)-1}$ and the annihilator of N is the principal ideal $Q=\left(w^{t(w)-1}\right)$.

Conclusion
We note that subrings of pre-p-nil-ring N throughout may be subdirectly reducible. For example, suppose that $t(w) \geq 4$, and let U be the subring of N which is generated by the elements $w^{2}, \Lambda, w^{t(w)-1}$. Then $w^{t(w)-2} \neq 0$ and $w^{t(w)-1} \neq 0$ are elements of the annihilator Q of U, which is therefore not a principal ideal. Hence U is subdirectly reducible by Theorem 5 . Contrasting the situation with finite p-rings (cf. the introduction), U is not directly reducible if $t(w)=6$. In order to prove this, let us assume that $U=U_{1} \oplus U_{2}$. Then at least in one of the U_{i} say in U_{l}, there must occur an element $x=c w^{2}+\Lambda$ with $c w^{2} \neq 0$, perhaps among other terms. Suitable multiplications with w^{2} and w^{3} show that $c w^{t(w)-1} \in U_{1}$, then $c w^{t(w)-2} \in U_{1}$ and therefore $Q \in U_{1}$. As we must have $Q \cap U_{2} \neq 0$ (cf. the proof of Theorem 5), this contradicts $U_{1} \cap U_{2}=(0)$.

Moreover, besides the pre-p-nil rings generated by one element, there are many others, which are likewise subdirectly irreducible (for example, the ring presented at the end of Section 1 with the annihilator $Q=(q)$, or those subrings of the pre-p-nil-ring N without annihilator constructed after Theorem 4, which are generated by the elements

References

[1] A. Abian and W. A. McWorter, (1999) On the structure of pre-p-rings, this Monthly, 71, 135-157.
[2] A. H. Clifford and G. B Preston (2001) The algebraic theory of semigroups, Vol. 1. Math. Surveys America Math. Soc. Volume 7, 1245-1255.
[3] N. H. McCoy (2000) Subdirectly irreducible commutative rings, Duke Math. J., Volume 12, 381-387.
[4] N. H. McCoy (1998) Rings and ideals, Carus Monograph, No. 8, 457-460
[5] N. H. McCoy and D. Montgomery (1996) A representation of generalized Boolean rings, Duke Math. J., 3, 455-459.
[6] L. Rédei, (1959) The Algebra, New York: Leipzig Publishers
[7] H. J. Weinert (1980) Zur Theorie der Algebren und monomialen Ringe, Acta Sci. Math. Szeged, 26, 171-186.

