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Abstract 

 
Numerical solution techniques such as Function space algorithm 

(FSA), Extended conjugate gradient method (ECGM) and Imbedding 
extended conjugate gradient method (MECGM) are common techniques for 
solving optimal control problems.  However, these techniques are 
computationally expensive and iteratively time consuming.  In this paper, a 
Discretized constrained algorithm (DCA) with an associated operator which 
replaces the integral features of these techniques by a series of summation is 
developed.  Illustrative examples are presented.  The results obtained show 
that the Discretized constrained algorithm (DCA) is much more accurate and 
more efficient than some of these techniques, particularly the FSA. 
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1.0 Introduction 
Some schemes, Function space algorithm (FSA), Extended conjugate gradient 

method (ECGM) and Multipliers extended conjugate gradient method (MECGM) 
developed by Ibiejugba and Onumanyi [4] though   based on Fletcher and Reeves [1] 
ideas have been used to solve quadratic control problems constrained by ordinary 
differential equation of the linear type or evolution equation of the retarded type.  This 
new scheme, discretized constrained algorithm  (DCA) has reduced the computational 
rigour characterized of the old schemes by discretizing, thus replacing the integral 
features of the old schemes and constructing an associated operator for the discretized 
problem. The objective of this paper is to solve two problems with penalty constant µ 
assuming values 0.5(2.5)0.5 for each cycle of iteration terminated by the stopping rule of 
the conjugate gradient method and using qbasic-programming language to evaluate the 
efficiency of this new scheme compared to the old schemes 

 
2.0 Generalized problem 

 ( ) ( )( )dttbutaxMin
T

∫ +
0

22  subject to ( ) ( ) ( )tdutcxtx +=
•

 0 ≤ t ≤ T 

X(0) = X0   = 0       a , b, c , d are in R   (2.1) 
The constrained problem (1) can be turned into unconstrained problem via the penalty 
method (2.1)  The problem may be put in the following equivalence form; 

( ) { ( ) ( ) ( ) ( ) ( ) } 022

0

2 ≥−−++∫=〉〈 µµ ,tduxtcxtxtbutaxMinAZ,Z
T

U,xH
&  the penalty (2.2) 

constant t. 
2.1 Discretization 

By discretizing (2), subdivide [0,T] into n equal intervals at mesh points 
nn x,x,,xx 110 −Λπ  where n is the number of partition points chosen arbitrarily, thus having  

(n + 1) partition points, with xj = j*∆j = 0,1,2…n, and ∆j =∆k is the fixed length of each 
subinterval for j = k or not.  By j*∆j, it means j multiplied by ∆j.  Let 
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•
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X(0) = 0 
We then have the discretized generalized problem in the form;  
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2.2  Discretized, unconstrained generalized problem 
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2.3 Construction of operator A 
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Setting  ( ) ,tu kK 02 = in (2.9) we have  
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Define ( ) ( ) ( ) ( ) ( )kKKKKkKKKk txtxt 222 &∆δ∆µδµαΩ ++++=  and 

( ) ( ) ( ) ( )kKkKKkKKk txtxtf 22

2 ∆δ∆µ∆µ ++= &  
( ) ( ) ( ).txtVtuA kKKkkK 221121 λ==   To obtain the component A11 x K1(tk) =V11(tk), ( ) ( )kk tVt 11−Ω  

and ( )ktf  - V11 
( )kt  are both continuous  functions on [0,T] , i.e.  

( )ktΩ  is a function of ( )kk tx 2  and ( )kk tx 2
& , which are both continuous.  So also, ( )ktf  is a 

function of ( )kk tx 2
&  and ( )kk tx 2 .  Hence, the difference of two continuous functions is 

continuous.  
And choosing ( ) ( ) ( ) 00]0[ 111 ==∋∈• TxxT,Dx KKK , we then have  
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T
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( ) ( )kk tVtf 11
&−  is continuously differentiable on [0, T] with 
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( ) ( ) ( ) ( ) ( )kkkkk ttftqtVtV Ω−==−
•••

1111    (2.15) 

with the initial conditions ( ) ( ) 011011 0and0 rVpV ==
••

.  Solving (2.15) by Laplace transform 
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In equation (2.11), setting ( ) ( ) 00 22 =→=
•

kKkK txtx .  We have  
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2.4 Data and analysis 
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Having constructed operator A, written as 







=

2221

1211

vv

vv
A . where V11 is (2.16), V12 is (2.26), V21 

is (2.12b), V22 is (2.24b).  The discretized generalized problem (P1) is now applied to the following 
problems P1 and P2 stated thus, 
Problem P1 

( ) ( )( )dttutx∫ +
1

0

22Min such that ( ) ( )tu.tx.X 90410952 +=& , the solution to this problem is 

obtained by assuming the following  initial values; 5000 .u,tx ==  and 5250 .. ≤≤ µ .  The exact 

analytical solution is 1.0647 given by [7]. Assume the followings arising from the discretization with 
meshpoints in the interval  [0,1]; 

( ) kkkkkkkkkkkkkk d,c,cdd,db.cca ∆µρ∆µδ∆µ∆µλ∆µ∆β∆µ∆µµ∆α 212222 22222 −=+−=+=+=+++=
 
 where 9041and095211constant,penalty  the size, step  theis .d.c,b,ak ====µ∆  
The problem has been solved analytically and by other numerical methods such as 
function space algorithm (FSA), Extended conjugate gradient method (ECGM) and 
multiplier imbedding extended conjugate gradient method (MECGM)[8].  The concern 
here, in this paper, is solving the discretized constrained algorithm (DCA) problem 
numerically using penalty constant µ, where µ=. 5(2.5). 5, i.e. µ assumes initial value .5 
with increment = .5 and terminal value 2.5. These   penalty constants are chosen small, 
since bigger penalty constants, say 10,  
 
20, 40, 50, 60, 80 and 100 tend to violate constraints satisfaction [8]. The step size=.2 is  
chosen arbitrarily  constant.  Also, the number of iterations is determined by the value of 
the gradient within some specified interval, say [.0025, +.0025], in the conjugate gradient 
algorithm , otherwise allowing the gradient , g0  =0  may result in an infinite  loop.  A 
program written in q-basic gave the following tabulated results: 
 

Table 1.1: Numerical Solution of Problem P1 

 
Penalty 

Constants 
Alg Stepsize Iteration Objective 

Function 
Constraint 
Satisfaction 

Penalized 
Functional 

µ = .5 DCA .2 5 1.9859 2.6864 3.32917 
µ = .5 

λ =-2.88 
FSA 

ECGM 
MECGM 

.2 

.2 

.2 

50 
7 
10 

1.6517 
1.0956 
1.0715 

11.6227 
0.4544 
1.1249 

 

µ = .1 DCA .2 5 1.982307 8.557396 10.4697 
µ = .1 

λ = -6.00 
FSA 

ECGM 
MECGM 

.2 

.2 

.2 

50 
7 
4 

1.6250 
1.4834 
0.7073 

11.2990 
0.13813 
0.95018 

 

µ = 1.5 DCA .2 5 
 

1.352 
 

9.61526 
 

15.76779 
 

µ = 1.5 
λ = -9.11 

FSA 
ECGM 

MECGM 

.2 

.2 

.2 

50 
6 
3 

1.60017 
1.5557 
0.8686 

10.9884 
0.08652 
1.1616 

 

µ = 2 DCA .2 5 1.352 9.61526 20.51305 
µ = 2 

λ =-10.57 
ESA 

ECGM 
MECGM 

.2 

.2 

.2 

50 
7 
3 

1.57684 
1.4686 
0.9386 

10.6902 
0.03531 
1.0477 

 

µ =2.5 DCA .2 5 1.352 9.61526 25.37831 
µ =2.5 

λ =-10.37 
FSA 

ECGM 
.2 
.2 

50 
6 

1.55497 
1.58206 

10.402 
8.1262*10-3 
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MECGM .2 2 1.0178 1.6313 
 
Problem P 2 

( ) ( )( )dttutx∫ +
1

0

22Min subject to ( ) ( ) .x,UtX
Tt

10
0

==
≤≤

&   The solution to this  problem is obtained 

by assuming  the  following  initial values  for the  variables; 11 00 == u,x .  The exact 
analytical solution is 0.7641.  Applying the same algorithm to Problem P2 and solving by 
gbasic programming language, we have the following Table 1.2: 
 

Table 1.2: numerical solution of P2 
 

Penalty  
Constant 

Algo Stepsize Iteration Objective Constrained 
Satisfaction 

µ = .5 DCA .2 1 1.6 .8 
µ = .5 
λ = -0.74 

FSA 
ECGM 
MECGM 

.2 

.2 

.2 

50 
3 
3 

1.9777 
0.79989 
0.1781 

0.9789 
0.01313 
0.9169 

µ = 1 DCA .2 3 0.8303 0.06353 
µ = 1.0 
λ = -1.55 

FSA 
ECGM 
MECGM 

.2 

.2 

.2 

50 
4 
2 

1.9742 
0.72768 
0.6051 

0.9648 
0.0206 
0.4063 

µ  =  1.5 DCA .2 7 0.8676 0.065391 
µ = 1.5 

λ = -3.49 
FSA 
ECGM 
MECGM 

50 
4 
2 

1.971011 
0.97256 
0.7647 

0.9514 
0.2232 
0.2875 

 

µ = 2.0 DCA .2 
 

11 0.8769 0.04895 

µ = 2.0 
λ = -4.86 

 

FSA 
ECGM 
MECGM 

.2 
 

50 
7 
3 

1.9677 
0.98866 
0.7013 

0.9379 
0.01256 
0.1942 

µ=2.5 DCA .2 15 0.8747 0.038922 
µ = 2.5 

λ = -8.49 
FSA 

ECGM 
MECGM 

.2 
 

50 
6 
4 

1.9645 
0.92047 
0.6894 

0.9247 
0.02595 
0.13710 

 
 
 
 
 

3.0 Summary and recommendation 
From the above Table 1.1, we see that   for   parameter constant.5 ≤ µ ≤ 1.5 the result of DCA 

trails behind other methods with step length  .2. But for parameter µ greater than 1.0 the result is better than 
either the FSA or the ECGM but trails behind the MECGM. And for parameter greater than 1.5 the results 
for the objectives and the constrained are repeated.  

The penalized functional values in the penalized functional column are also included in this table. 
These values reflect what are expected, since the penalty constants are also increasing.  For Table 1.2 with 
time step (.2), the FSA trails behind every other algorithm in term of convergence.  In fact, FSA maintains 
a largest constant number of iterations per circle for every µ, since its decreasing sequence of solutions; 
1.9777, 1.9742, 1.971011, 1.9677, 1.9645,is obviously diverging   Therefore attention for comparison is 
focussed between either the MECGM or ECGM and the DCA.  
On one hand, the DCA with an optimum at .8303 trails behind the MECGM wiith an 
optimum at .7647 yet its trend    in terms of iteration is increasing as its objective 
functional values appreciate to the analytic Optimum  .7641, for 1.0 ≤ µ ≤ 2.5 while the 
MECGM’s iteration, though lowest, can be likened to a discrete sinusoidal graph or 
valley for all µ such that .5 ≤ µ ≤ 1.0. 
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On the other hand, the ECGM comes closest to the optimum .7276 for .5 ≤ µ ≤ 
1.0 but suddenly deteriorates to trail behind the DCA for 1.5≤µ≤ 2.5 with unstable pattern 
number of iterations.  
Conclusively, DCA performs better than either FSA or ECGM and trails behind 
MECGM but iteratively predictable than MECGM.  
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