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Abstract

Numerical solution techniques such as Function space algorithm
(FSA), Extended conjugate gradient method (ECGM) and Imbedding
extended conjugate gradient method (MECGM) are common techniques for
solving optimal control problems. However, these techniques are
computationally expensive and iteratively time consuming. In this paper, a
Discretized constrained algorithm (DCA) with an associated operator which
replaces the integral features of these techniques by a series of summation is
developed. Illustrative examples are presented. The results obtained show
that the Discretized constrained algorithm (DCA) is much more accurate and
more efficient than some of these techniques, particularly the FSA.
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1.0 Introduction
Some schemes, Function space algorithm (FSA), Extended conjugatengradi

method (ECGM) and Multipliers extended conjugate gradient method QGREC
developed by Ibiejugba and Onumanyi [4] though based on FletchdRemwks [1]
ideas have been used to solve quadratic control problems constrainedlitgry
differential equation of the linear type or evolution equation of tterded type. This
new scheme, discretized constrained algorithm (DCA) has eddilne computational
rigour characterized of the old schemes by discretizing, thuaciegl the integral
features of the old schemes and constructing an associated opardate discretized
problem. The objective of this paper is to solve two problems with yecattstantu
assuming values 0.5(2.5)0.5 for each cycle of iteration terminatttelstopping rule of
the conjugate gradient method and using gbasic-programming languagaluate the
efficiency of this new scheme compared to the old schemes

2.0 Generalized problem
Min](ax?(t) +bu?(t)dt subject tox(t) = ex(t)+du(t) 0<t<T

X0)=Xo =0 a,b,c,dareinR (2.1)
The constrained problem (1) can be turned into unconstrained problem \parthlky
method (2.1) The problem may be put in the following equivalence form;

(Z,AZ), = Min(xyu)}{ax2 (t)+bu2(t)+/.1||)§t)—cx(t)—dux(t)||2}, 420 the penalty  (2.2)

0

constant.
2.1 Discretization

By discretizing (2), subdivide [0,T] intom equal intervals at mesh points
X, XA ,X,,,x, Wheren is the number of partition points chosen arbitrarily, thus having

(n + 1) partition points, with; = j*4; = 0,1,2..n, andAj =Ay is the fixed length of each
subinterval forj = k or not. By j*4; it means j multiplied byA;. Let
t, =0 andt, :iEk_lej t, =T, k=123A .n,
x(k):xk(tkv), u(k):uk(tk), k=012A ,n
By Euler’'s scheme or finite difference method,
X(k):—(x(kJ'g_X(k)), k=0LA ,N-1

k

X.(t) = ox(t) + dul(t)
W) - o, 1) (2:3)

X(0)=0
We then have the discretized generalized probletimerdorm;
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minJ = éﬁk (anz(tk)"“bUkz(tk))

subject tow=cxk(tk)+duk(tk) (2.4)

k
x(0)=0
2.2 Discretized, unconstrained generalized problem

Min 30, ) = ${4 (0, )+bu, 20, A0t ), () - A0, () - a0, (6,017
{ ()0 + e 4] 1y 104 402 ) () 2 2t
Xt % ) 242041 +x. (0 ) ()—2#14]}
et z,=[ 0] ananh)=xl) Lot @ =ad sueudc ucd, 6, <04 +a0a
A, =204,
+2uedA’, 8, = —2u(l+c4,), p, = -2wd4, (2.5) becomes
kzi:o{akxkz(tk)-’-ﬁkukz(tk)-l- ykz(tk)/l+ Xk (tk )uk (tk )/]k + yk (tk )Xk (tk)Jk + yk (tk )uk (tk )pk} (2'6)
2.3  Construction of operator A
<Zk1(tk )’AZkZ (tk )> = i{ a Xkl(tk )Xk (tk )+ﬁkukl(tk )ukz (tk)+ ykl(tk )ykz (tk )w
+/1kxkl(tk)uk2( )+5kukl( ) Z(tk)+5kykl(tk)sz(tk)+5kyk2(tk)Xkl(tk) (27)
+pkyk1(tk)uk2(tk)+pkkyk2(tk)ukl(tk)

_ An A12 Xy _ A11Xk2+A12uk2 . I
WhereAZ“(tk)_[Azl Azzj(u ]_(Azﬁkz*'AnUKz]' Further simplifying (2.7), we have

<ZK1(tk)’AZKZ(tk)>H :é{akXKl(tk)XKZ(tk)+ﬁkuK1(t )uKZ(tk)

+/'1[ (A K&];-'-)(Kl)(AKK&Z +XK2)]+/] XKluK2+/]KuK1XK2+5 (AKK&1+XK1)XK2 (2'8)
+5KXK1(A ﬁfiz +XK2)+pK (A &I—FXKI)UKZ +pK Kl(AKK&Z +XK2)}

(Zalt) AZ D = SLaxa b))+ Bua i) + 1478, 008 (0) + 1408, )x.0.)

1,5, 08+ 20 ) Akl ) A0 6)+ AR ) (29)
+6KXK1(tk)XK2(tk)+6K4(X1<1(tk)£k2(tk)+6KXK1(tk)XK2(tk)+pK4<uK2(tk)&l(tk)+pKuK2(tk)XKl(tk)}
Setting u,,(t,)=0,in (2.9) we have

A11XK2 — Vll

)

) AZL) = Sl B ) 28 ) x5 (2.10)

+A»<K1(tk)sz(k)+AKum() )+ AR 6% )+ % ()% (8 )+ O AX (8 & 1, )T % (%, )
St @ () + 1408 )+ ¢, e )+5x )+ 3,48, (t,)+ 0, %, (t, )]
+ X (6 A B, (8, )+ 18 X, (8 )+ 8 A, (8] U (£ )T A% (813

= 2% LVt ) 8 M) +ult Ve (2.12)

(2.11)
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Define o(t, )= (a, +u+25, ), )+ (w4, +o,4 )%, ) and

Ht) = & (1) + (a, +0,.4 )%, )
Au,t)=V,(t)=Ax,(t) To obtain the component Ax Ki(t) =V1i(t), 2(t,)-V,,(t,)
and f(k) -V11
(t.) are both continuous functions on [0,T], i.e
Q(t,) is a function ofx,,(t,) and %, (t,), which are both continuous. So alsq, ) is a
function of %, (t,) and x,,(t,). Hence, the difference of two continuous functions is

continuous.
And choosingx,,(+)0D[0,T] Ox,,(0)=x,,(T)=0, we then have

i{ XKl(tk) (k)_ 11(k)]+£fz1(k) (k)_vgﬁ(tk)]}dtk =0 (213)
f(t, )-\&(t,) is continuously differentiable on [0, T] with
SLH0)-EE = 26)-v() (2.14)
F(t)-Valt) = 20) -Vt ) or Vi) -vat)= 1)-2 ()
Va(t)-Vi(t)=a(t)= 1 (t)-2() (2.15)
with the initial conditionsv, (0)= p, and V.(0)=r,. Solving (2.15) by Laplace transform

and letting L{v,,(t, } =V,,(9). L{at, } = Q(s), we have
$2V(s)- p,s—t, -V.,(8) = Q(S), Vu(s) = ?()1 202 +Sz'r°_1 and taking the inverse of Laplace

transform, we have

Vai(t,)= Jq( )sinh(t, -s,)ds, + p, cosh(t,)+r, simh(t,) (2.16)
But Q(T)-v,(T)=0 (2.17)
2(0)-v,,(0)=0 (2.18)

2(0)=p,. 2(0)=(a, +£28, )%, 0)+( 4 +5,4)x2(0)= p,. From (2.1712(7)=V,,(7),
Vn(tk):lq(sk)gnh(-r S )dSk +[(ak +IU+25k )XKZ( )+(,UAK +AK5K )XKZ(O)] COSh(T)"'To Sinh(T )
= (a +,u+25 );<K2(T)+(,UAK +5KAK);<K2(T)]. Therefore

(-Jals)sinn(T ~s)ds, ~[{ar +4+23)x(0) + (w4, + 4.8, )xco(0)cosh(T) +

° snh( ) (2.19)
[ (o + g+ 25 )xea(T) + (A + 8.4 )xa(T)D)
But aft, )= f(t.)-2.(t.),

(s, )sinh(t, - s,)ds, :—sinh(T)f(O)+£f(sK )eosh(t, —s,)ds, (2.20)

j
q(sk)sinh(T Sk)dsk =-snhT{ u 4, XK2(0)+AK (/U+JK) ( )}+I{/'1AK KZ(k)
4, (/‘1+5K )XKZKz(SK )}COSh(T_SK )dSK _}{ (aK +u+20, )XKZ(SK) (221)

+4, (,u+ O, )§<K2(sk )} sjnh(T -S, )dsk

o— -
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{[ (@, +u+26, %, (T)+ 4, (u+ 3, ) xo(T)] - [ @ + 1+ 23, )%, (0)

fo = snhT
+AK (/1+5K)XK2( )CShT}_—{ snhT[(MK KZ( ))+AK (IU+JK )XKZ(O)] (222)
+}{('UAKZ X;z(sk))-FAK (IU+JK )XKz(Sk)}COSh(T_Sk )dSk __}{(GK +p+20, )XKZ(Sk)
+4, (+0, )xxe (s, )} Sinh(T - s, )ds, }
)AL= )+ 42 0 o0 O ST A KOs

# 4,0 8 O+ 1 Kels) 4.+ 8 )8y eosn(, -5 s,

~ [l + 1+ 20 )x,(8) + Al 8 )xee(s )y sinnl, ~ s ),

In equation (2.11), setting,(t,)=0 - x«.(t )=0. We have
(Zaa AZ,o ()0 = UG 0 () A% (0 0 (0) + 2,8, X v,
+ DXt s 0 ) = 200 0 AU )+ 200 61+ Xl o, 4,0, (1) (2.24)
U (B 0 ) = 00 Ve )+ 30 Vi (1 )+ U (0 V. (1)
Valt)= A ()= Auat)

Again dEﬁneg(tk)z(/]k +pk)uK2(tk) and h(t ) pAu KZ( k) g(tk)_vlz(tk) and h(tk)_\/lz(tk) are
continuous function oMo, T]. As before

V,(t, )=t )sinh(t, - s, )ds, +e,csht, +I, sinht, (2.25)
=g(0)=(A +p,)u,.(0)
[g(T)-]a,(s.)sinh(T -3, )ds, —g(0)coshT]
07 O snhT
[ + 2, (T)-[ a5, ) Snh(T -5, )ds, = (A, + o, Ju,, (O)eshT]
0 snhT
V. (t,)= (0,4 )u,, (0)snntt,)- (0,4 ., coshlt, s, )as,
0 sinht

- .:E(/]k +pk)JK2(SK )Sinh(tk _Sk)dsk +(/]k +pk)u 2( )COSht + snh

A+ Ju(T)
(2.26)

~(A, *+ W (0)coshT =(0,4, Juy.,(Q)sinh(T)+ (o, 4, Yoo (s, Jcosh(T s, )os,
+}(/]K * Px Miz Sinh(T _Sk)dsk }

2.4 Dataand analysis
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Vll V12
V21 V22

is (2.12b),V,, is (2.24b). The discretized generalized problétt)(is now applied to the following
problems P1 and P2 stated thus,
Problem P1

Min [ (x2(t)+u?(t))dt such thab&= 2,095t )+1.904u(t), the solution to this problem is
0

Having constructed operator A, written As= ( j . whereVy; is (2.16),Viz is (2.26),V;

obtained by assuming the following initial values, =t,u, =0.5 and 0.5<u<25. The exact

analytical solution is 1.0647 given by [7]. Assunie followings arising from the discretization with
meshpoints in the interval [0,1];

a, =ad, +pu+ PATC + u2cA, B, =bA + A7, A, =204, +2ucdA”, 6, = —2ul+cd, ), p, =24,

where 4, is thestepsize, 4 thepenaltyconstanta =1,b =1,¢ = 2.095 andd =1.904

The problem has been solved analytically and by other numericélodsetsuch as
function space algorithm (FSA), Extended conjugate gradient metBG&GN) and
multiplier imbedding extended conjugate gradient method (MECGM)[®&je concern
here, in this paper, is solving the discretized constrained algofi@A) problem
numerically using penalty constgmt wherep=. 5(2.5). 5, i.ey assumes initial value .5
with increment = .5 and terminal value 2.5. These penalty constianthosen small,
since bigger penalty constants, say 10,

20, 40, 50, 60, 80 and 100 tend to violate constraints satisfaction [8]. Trez&e? is
chosen arbitrarily constant. Also, the number of iterations eymeted by the value of
the gradient within some specified interval, say [.0025, +.0025], in thagatejgradient
algorithm , otherwise allowing the gradiengp, =0 may result in an infinite loop. A
program written in g-basic gave the following tabulated results:

Table 1.1: Numerical Solution of Problem P1

Penalty Alg Stepsize Iteration Objective Constraint Penalized
Constants Function Satisfaction Functional
pu=.5 DCA 2 5 1.9859 2.6864 3.32917
u=.5 FSA 2 50 1.6517 11.6227
A =-2.88 ECGM 2 7 1.0956 0.4544
MECGM .2 10 1.0715 1.1249
p=.1 DCA 2 5 1.982307 8.557396 10.4697
p=.1 FSA 2 50 1.6250 11.2990
A =-6.00 ECGM 2 7 1.4834 0.13813
MECGM 2 4 0.7073 0.95018
p=15 DCA 2 5 1.352 9.61526 15.76779
p=15 FSA 2 50 1.60017 10.9884
A=-9.11 ECGM 2 6 1.5557 0.08652
MECGM 2 3 0.8686 1.1616
p=2 DCA 2 5 1.352 9.61526 20.51305
p=2 ESA 2 50 1.57684 10.6902
A =-10.57 ECGM 2 7 1.4686 0.03531
MECGM 2 3 0.9386 1.0477
p=25 DCA 2 5 1.352 9.61526 25.37831
n=2.5 FSA 2 50 1.55497 10.402
A =-10.37 ECGM 2 6 1.58206 8.1262*10°
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| MECGM |

1.0178

1.6313

Problem P 2

Min ] (x2(t) +u?(t)) dt subject to #t)= U_, x(0)=1. The solution to this problem is obtained

by assuming the following

initial values for the variaples1, y,=1.

The exact

analytical solution is 0.7641. Applying the same algorithm to ProBli2rand solving by
gbasic programming language, we have the following Table 1.2:

Table 1.2: numerical solution of P2

Penalty Algo Stepsize Iteration Objective Constraingd
Constant Satisfaction
u=.5 DCA .2 1 1.6 .8
u=.5 FSA 2 50 1.9777 0.9789
A=-0.74 ECGM 2 3 0.79989 0.01313
MECGM 2 3 0.1781 0.9169
pu=1 DCA 2 3 0.8303 0.06353
n=1.0 FSA 2 50 1.9742 0.9648
A =-1.55 ECGM 2 4 0.72768 0.0206
MECGM 2 2 0.6051 0.4063
p=15 DCA 2 7 0.8676 0.065391
u=15 FSA 50 1.971011 0.9514
A =-3.49 ECGM 4 0.97256 0.2232
MECGM 2 0.7647 0.2875
n=2.0 DCA 2 11 0.8769 0.04895
u=20 FSA 2 50 1.9677 0.9379
A =-4.86 ECGM 7 0.98866 0.01256
MECGM 3 0.7013 0.1942
p=2.5 DCA 2 15 0.8747 0.038922
pu=25 FSA 2 50 1.9645 0.9247
A =-8.49 ECGM 6 0.92047 0.02595
MECGM 4 0.6894 0.13710
3.0 Summary and recommendation

From the above Table 1.1, we see that for petentonstant.s p < 1.5 the result of DCA
trails behind other methods with step length & f8r parametep greater than 1.0 the result is better than
either the FSA or the ECGM but trails behind the®@&\V. And for parameter greater than 1.5 the results
for the objectives and the constrained are repeated

The penalized functional values in the penalizadtfional column are also included in this table.
These values reflect what are expected, sincedhalty constants are also increasing. For Tal@evith
time step (.2), the FSA trails behind every otHgoathm in term of convergence. In fact, FSA ntains
a largest constant number of iterations per cifoteevery, since its decreasing sequence of solutions;
1.9777, 1.9742, 1.971011, 1.9677, 1.9645,is oblyodiverging Therefore attention for comparis@n i
focussed between either the MECGM or ECGM and 6&D

On one hand, the DCA with an optimum at .8303 trails behind the MECG#M an
optimum at .7647 yet its trend in terms of iteration is inangaas its objective
functional values appreciate to the analytic Optimum .7641, fo£ L& 2.5 while the
MECGM’s iteration, though lowest, can be likened to a discrete suhisgraph or
valley for allp such that . u<1.0.
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On the other hand, the ECGM comes closest to the optimum .7276dqx 6

1.0 but suddenly deteriorates to trail behind the DCA fagli<®.5 with unstable pattern
number of iterations.

Conclusively, DCA performs better than either FSA or ECGM amdstrbehind
MECGM but iteratively predictable than MECGM.
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