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Abstract

Let A beareal nxn matrix, let b a real column n-vector and ¢ :

R" - R such that Ax+0¢@(x) b where 0¢ isthe sub gradient of ¢ .

A computable stochastic iterative scheme is suggested; which is a
modification of Robbins-Monroe procedure and studied in the context of the
above concrete problem. This scheme is shown to converge strongly to the

solution of the above problem.
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1.0 Introduction

Let A=(a, ) be areal positive definitaxn matrix and b a real column n-vector. FaryinR",
Euclidean n-dimensional space, (et,y) =i>§ y, and ||><I|2 = (x,x) = Xxwhere X' denotes the transpose of
x in R".

For a convex functiog, not necessarily differentiable, it is well knowthat if
D(¢)={xOR": g(x) 1o} # ¢, then for xOD(¢)the sub gradiendg ofg: R" -~ R at x is defined
asdg(x)={gOR": f(x+t)-f(x)=2mg,t @} Ox+tOD(¢) (1.1)
and it is a monotone. We consider the finite disi@mal variational problem: Find[0D(¢) such that

Ax+0¢(x)Ob (1.2)

This is a special case of a generalized equatimsisting typically of a smooth palnt and a

multi-valued non-smooth palnt as expressed in the form  h(x)+h,(x) Ob (1.3)

which has important applications in physical andieeering sciences and in many other fields (see fo
instance [3])?

Whenh; is the gradient of a real valued differentiableneex function H andh,, the sub-gradient
of a proper lower semi continuous convex functihnthe variational problem reduces to the searclthier

minimum of the non-smooth function H,(x)+H,(x)+b'x (1.4)
so that the problem (1.2) is equivalent to minimigthe functiorf defined as
f(x)=1xAx+@(x)—-b'x (1.5)

A number of procedures are available for solvinghsproblems (see for example [9])
The form of (1.5) suggests a reformation of thegioal multi-valued problem as a search for zera of
single-valued section of the non-smooth functigfn. In this paper, a modified stochastic gradieipety

recursive sequence is suggested: X, =X —p,d, (1.6)
where d, is the estimate of a single-valued sectgof of and{ o, } is a sequence of positive scalars to
be specified. This procedure is a way of stocbalyi solving the equation.
{x :0f(x )=0} 1.7)
Stochastic approximation algorithms of differeypds have long been studied in many contexts
(see for example [5]). The stochastic iteratiorthoé in this paper and some other stochastic dalgos

differ mainly in the way the gradient vector andrghg point of the algorithm are estimated to erede
the convergence of the sequence.
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2.0 Mathematical for mulation of the stochastic iteration method
We associate with each random vectow[OR" and a fixedalOR"the expectation operator

E such thaE u is defined by the requirement ti&ta,u) = (a,Eu) if E|u|<c where|u].(uv),(au)
are random

variables in the usual sense. Falefined in (1.5) we can see thah f(t x) =+ for any xOR", x# 0
t oo

so that there exists a minimum of fRand every minimizing sequence converges to thermimi off.
Using (1.1), it is easy to see that édrld f , a single-valued section off ,

f(x+t)—f(x)2<g,t> (2.1)
for every x+tOD( f). We obtain an estimatkof a single-valued sectianof 0 f by a noise corrupted
measurement that adequately approximgtiesthe sense that E|d-g|=0 (2.2)

and E| d - g is minimum. So that at each iteration of the ststic sequencé X Jeadefined by (1.6),

the estimated gradient vector is used to deterth@elirection of search, which provides the maximmata
of decrease inf (x). In this connection, let;, =(t,,,t,;,..t;)0R" and

y, = y(x )= f(x“+t,)- f(x),x“0OD(f) (2.3)
for fixed k, and j=1, ...,m,n+1<m<in(n+1)-1. Exploiting the fact that each poimJ D ( f ) allows
supporting hyper planes, so that if points,x, A ,x, in R" are chosen in the neighborhood of
x",tj =X, -x¢ for a fixed k, then the relationship between and t; for j = 1,...,m is adequately
approximated by

—/ ~K
Y; —<g ,tj>+eJ (2.9)
for some single-valued sectiog* 00 f(x*) where Y, and e, :e(xj) are respectively the

independent observable random variables corresponding to ahedimts )ﬂ OR for fixed k and the
random error of thej" observation with Egx,)=0 and E[e(x )e(x,)] =d°d,, i,j=1A .m,
0o’ oo

This idea was used in [6] to show that

Theorem 2.1
Let {p*} be a real sequence such that @° =1,0< p* <1 Ok <1 (i) 3 p* = (iii)
k=0

%,OZK <o  then the sequence{ X" };10 generated by X’0OD(f) and defined iteratively
byxk _ pkdk,
, a least square estimate of the single-valuedseaj X )Yremains in and converges
d“ al i f the singl lued “0Oo f(x*) insinD(f )and
strongly to{X :0 f(X )=0}
This approximation scheme turns out to be adequate simeexcdigures of small area are well

approximated by an interval (see for example [4]).
For the case in whiclp =0, it has been shown (see for instance [7]) that wkemx, A ,x_, are

chosen in the neighborhoddk of such thatitij = (Oand itf =1 (2.5)
j=1 j=1
Then this choice df linearizes the functiohso that the least squares approximation
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d“=M7*3ty, =0, M=3tt (2.6)
i=1 j=1
exists and is adequate for approximatificsuch thatE" g —dk" =0 for suchk and yields a minimum

Euclidean distance between the true and the estihgradient vectoE | g* —d2||2. An easy calculation

shows that E|g*-d?|" =0 and E| g* -d?|" =M o for each k. 2.7)
From the foregoing, it can be seen that the ushiescheme is justified. In the sequel, we asswiti@ut
lost of generality, that? =1.

3.0 M odification
In this section we attempt to improve on the cogeace of the iteration in (1.6) by segmentatiomisTs a
useful technique in accelerating the convergendhelgorithm (see for example [8]).

Let R" be partitioned inta exclusive segments, , j=1L.A ,zn<z<2". Let X; be chosen

randomly in's; such that f(x,)> Oor f(x;)<0 [Oj. Let Pr(x; =a)=P, be the probability that

z X f
x =a, P20, ZP =1 putp =— ) othatx =sxp =y At (x,) 3.1)
Zf(X) "ﬂ J:zf(x)
Let X =x-pd,p O (3.2)
whered is an estimate 0§ 00 f . But f(x+t)-f(x)=(g.t) by (1.1). Thus
f(x)- (X )2p(gd) 20 and f(x)= f(X)
(3.3)
Sincef is convex, from (3.1) and (3.3) we have f(lgixj P, )2 f(X* )DJ (3.4)
and P f(x )2 f(xX)0j (3.9)
HenceminX P, f(x; ) =minf(x; )2 f(x ), so that
f(x*):mjin{f(xj):ijSj} (3.6)
Under the above conditions, we can make the fatigwemark

Remark 3.1
The segmenS§, wherex' 0S; containsX for which f(x) is minimum

Thus we discard the other segments that do ngaicow’ . Then x” forms the starting point of
our search.

Furthermore, the gradient direction estimated essalt of set of trial points iR" differs from
that of the true gradient due to experimental error

However, the direction of search would be
correspondingly uncertain and so may slow the rate of

convergence of the sequence (see for example [1]).

Transforming the estimated gradient veadt@s capable of reducing the Euclidean distance
between the true and estimated gradient directiea for example [8]). To this end, we state the
following:
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Lemma 3.1
n
Let T =diag{a,.a,A ,a,} ,a,=a,= A ,a,, Zai =1 (3.7)
=

and letd be the least squares estimate of the single-vakemdion g0d f as in (2.6). Then
|g-Td|<|g-d| for anyd.
Pr oof

Let M =§1tjt} . ButE|g-d|" =M™ asin (2.6). Henceg|g-Td|" =T™M*T*
=

=M =aM ™, OTtamil
=g —dk||2. It is easy to see that the choicelafinimizes the Euclidean distance so that

|lo-Td|<|g~d| for all the least-squares approximatibof g. Thus, instead of search for the minimum
of f in the direction ofl, we consider an iterative scheme starte® atefined in (3.1), which minimizes

successively in the direction of the stochastiepehdent vector§Td“ }, , d* =M 3t y, along the
=

line x* — p*Td" as follows:

1. Computeg® =Td"

2 Compute the correspondip
3. Computex** = x* - pTd"

4 Has the process converged?

k+1

Is [x** =x*|md,6m0? If yes, thenx* =x". Where if no, we show that this sequence

converges strongly to the solution of problem (1.2)

Theorem 3.1

Let {,d(}E;o be a real sequence satisfying (0° =1, 0< p* <10k >1 (ii) gpk = i)

- 2k
k;)p <® then the stochastic sequence generatedkbgnd defined iteratively byx** = x* - p*Td* |

remains inD (0 f )and converges strongly{to;: af(;() =0 }
Proof
Let D, = p*||g* ~Td"|. Then{D,} is a sequence of independent random variablesm F2.6)

ED, =0 for each K, thus the sequence of partial sum;sK=§ijj is a Martingale. But
j=1
2 _ <& 2 _ & o) j i|? 4 o - S 2
E,7k _;EDj _le E”g -Td H sM™ X7, SinceY p? < hence,jZiEDj <®  go that
j= j= j=1 =

by a version of Martingale convergence theorem,[£@ havekZDk <e. Thus lim pg* -Td"|=0.
=1 —w

An earlier result in the theory of accretive opierad, due to Chidume [2] shows that the seque{r?éé,;,
generated byx° OD( f) and defined iteratively byx""* = x* - p*g*, g“0daf(x*) a single section of
of , remains irD(0 f) and converges strongly t(xE 10 f(xE)x). It follows from his result that our

sequence converges strongly to the solution ofoteblem (1.2). The convergent rate of this schésne
further improved if, as in Remark 3.1, the segm8nffor whichf attains its minimum is further segmented
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into z disjoint sub segment§,, ;,j =1,/A z and the pointx; DS&; is chosen such thaf()( )2 f(Xj )
for each j where the subscript, 1 denotes the first sub satatien process. Then, define
% = ZZ: Xj f(Xj ) * _ . f i 0

T jzl—i f(x) x, 08, sothatby (3.2) and (3.6§ (X n)=min{ f(x):x 0S }

j=

-

We discard thej - 1 segments, which do not contain the povﬁﬁt1 , and denote the remaining

segment, which containf«.(;l by S,. Thenf attains its minimum or§,. S, is further segmented into

mEE QO where

x"T, = x°. This technique accelerates the convergenceeofmibthod indicated in [1] and extends to the
solution of variational inequality.

z disjoint sub segmentS,, ,,j =LA z and the process repeated wHtﬂ* T =X T
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