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Abstract 
 

 Let A be a real nn×  matrix, let b a real column n-vector andϕ : 

RRn →  such that b)x(Ax ∋∂+ ϕ  where ϕ∂  is the sub gradient of ϕ .  

A computable stochastic iterative scheme is suggested; which is a 
modification of Robbins-Monroe procedure and studied in the context of the 
above concrete problem.  This scheme is shown to converge strongly to the 
solution of the above problem. 
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1.0 Introduction 
 Let )a(A ij=  be a real positive definite nn×  matrix and b a real column n-vector.  For y,x in nR , 

Euclidean n-dimensional space, let ∑=
=

n

i
ii yx)y,x(

1
and xx)x,x(x ′==2

where x′  denotes the transpose of 

x in nR . 
 For a convex functionϕ , not necessarily differentiable, it is well known that if 

φϕϕ ≠∞∈= })x(:Rx{)(D n π , then for )(Dx ϕ∈ the sub gradient ϕ∂  of RR: n →ϕ  at x  is defined 

as }t,g)x(f)tx(f:Rg{)x( n φπ≥−+∈=∂ϕ  )(Dtx ϕ∈+∀    (1.1) 

and it is a monotone.  We consider the finite dimensional variational problem:  Find )(Dx ϕ∈  such that  

     b)x(Ax ∋∂+ ϕ     (1.2) 

 This is a special case of a generalized equation consisting typically of a smooth part h1 and a 
multi-valued non-smooth part h2 as expressed in the form  b)x(h)x(h ∋+ 21   (1.3) 

which has important applications in physical and engineering sciences and in many other fields (see for 
instance [3])? 
 When h1 is the gradient of a real valued differentiable convex function H1 and h2, the sub-gradient 
of a proper lower semi continuous convex function H2, the variational problem reduces to the search for the 
minimum of the non-smooth function  xb)x(H)x(H ′++ 21    (1.4) 

so that the problem (1.2) is equivalent to minimizing the function f defined as 
     xb)x(Axx)x(f ′−+′= ϕ2

1   (1.5) 

 A number of procedures are available for solving such problems (see for example [9]) 
The form of (1.5) suggests a reformation of the original multi-valued problem as a search for zero of a 
single-valued section of the non-smooth function f∂ .  In this paper, a modified stochastic gradient type 

recursive sequence is suggested:   jjjj dxx ρ−=+1     (1.6) 

where jd  is the estimate of a single-valued section g of f∂  and }{ jρ  is a sequence of positive scalars to 

be specified.  This procedure is a way of stochastically solving the equation. 
    })x(f:x{ ** 0=∂     (1.7) 

 Stochastic approximation algorithms of different types have long been studied in many contexts 
(see for example [5]).  The stochastic iteration method in this paper and some other stochastic algorithms 
differ mainly in the way the gradient vector and starting point of the algorithm are estimated to accelerate 
the convergence of the sequence. 
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2.0  Mathematical formulation of the stochastic iteration method 
 We associate with each random vector nRv,u ∈  and a fixed nRa∈ the expectation operator 

E such that uE  is defined by the requirement that uE,au,aE =  if ∞<uE  where u,a,v,u,u  

are random  
 
 

variables in the usual sense. For f defined in (1.5) we can see that +∞=
∞→

)xt(flim
t

 for any 0≠∈ x,Rx n  

so that there exists a minimum of f in Rn and every minimizing sequence converges to the minimum of f. 
 Using (1.1), it is easy to see that for fg ∂∈ , a single-valued section of f∂ , 

    t,g)x(f)tx(f ≥−+     (2.1) 

for every )f(Dtx ∈+ .  We obtain an estimate d of a single-valued section g of f∂  by a noise corrupted 

measurement that adequately approximates g in the sense that   0=− gdE  (2.2) 

and 
2

gdE − is minimum.  So that at each iteration of the stochastic sequence ,}x{ k

k ∞
=1 defined by (1.6), 

the estimated gradient vector is used to determine the direction of search, which provides the maximum rate 
of decrease in )x(f .  In this connection, let, n

njjjj R)t,...t,t(t ∈= 21  and 

   )f(Dx),x(f)tx(f)x(yy kk

j

k

jj ∈−+==   (2.3) 

for fixed k, and  j=1, …,m, 111 2
1 −+≤≤+ )n(nmn .  Exploiting the fact that each point )f(Dx∈  allows 

supporting hyper planes, so that if points mx,,x,x Λ21  in nR  are chosen in the neighborhood of 
k

jj

k xxt,x −=  for a fixed k, then the relationship between yj and tj  for j = 1,…,m is adequately 

approximated by  

    jj

k

j et,gy +=      (2.4) 

for some single-valued section )x(fg kk ∂∈  where jy  and )x(ee jj =  are respectively the 

independent observable random variables corresponding to the trial points 
n

j Rx ∈  for fixed  k and the 

random error of the thj observation with 0=)x(Ee j  and ijji )]x(e)x(e[E δδ 2= ,  m.,,j,i Λ1= , 

∞ππ 20 σ  
 This idea was used in [6] to show that 

Theorem 2.1 
 Let }{ kρ  be a real sequence such that (i) 11010 <∀<<= k, kρρ  (ii) ∑ ∞=

∞

=0k

kρ  (iii) 

∑ ∞<
∞

=0

2

k

kρ , then the sequence 
∞
=ok

k }x{  generated by )f(Dx ∈0  and defined iteratively 

by
kkk dx ρ− ,  

kd , a least square estimate of the single-valued section )x(fg kk ∂∈ remains in )f(D  and converges 

strongly to })x(f:x{ ** 0=∂  

 This approximation scheme turns out to be adequate since convex figures of small area are well 
approximated by an interval (see for example [4]). 
 For the case in which 0≡ϕ , it has been shown (see for instance [7]) that when mx,,x,x Λ21  are 

chosen in the neighborhood 
kx of such that 0

1
=∑

=

m

j
ijt  and 1

1

2 =∑
=

m

j
ij

t      (2.5) 

Then this choice of tj linearizes the function f so that the least squares approximation 
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    ∑ ′==∑=
==

−
m

j
jjj

m

j
j

k ttM,ytMd
11

1 0    (2.6) 

exists and is adequate for approximating gk such that 0=− kk dgE  for such k and yields a minimum 

Euclidean distance between the true and the estimated gradient vector 
22dgE k − .  An easy calculation 

shows that   0
22 =− dgE k  and 2122 σ−=− MdgE k  for each k.  (2.7) 

From the foregoing, it can be seen that the use of this scheme is justified.  In the sequel, we assume without 
lost of generality, that 12 =σ . 
 
3.0 Modification 

In this section we attempt to improve on the convergence of the iteration in (1.6) by segmentation.  This is a 
useful technique in accelerating the convergence of the algorithm (see for example [8]). 

Let Rn be partitioned into z exclusive segments n

j zn,z,,.j,s 21 ≤<= Λ .  Let jx be chosen 

 
 

randomly in js  such that 0>)x(f j  or 0<)x(f j  j∀ .  Let jj P)xPr( == α  be the probability that 

,x j α=  ,Pj 0≥   ∑ =
=

z

j
jP

1
1.  Put 

∑

=

=

z

j
j

j

j

)x(f

)x(f
P

1

 so that x ∑=
=

z

j
jj Px

1
∑

∑

=
=

=

z

j
z

j
j

jj

)x(f

)x(fx

1

1

  (3.1) 

Let     0πρρ ,dxx * −=     (3.2) 

where d is an estimate of fg ∂∈ .  But t,g)x(f)tx(f ≥−+  by (1.1).  Thus 

0≥≥− d,g)x(f)x(f * ρ  and      )x(f)x(f *≥   

 (3.3) 

Since f is convex, from (3.1) and (3.3) we have  ∑ ∀≥
=

z

j

*

jj j)x(f)Px(f
1

  (3.4) 

and      ∑ ∀≥ j)x(f)x(fP *

jj     (3.5) 

Hence ∑ ≥= )x(f)x(fmin)x(fPmin *
jjj

j
, so that 

   }Sx:)x(f{min)x(f jjjj

* ∈=     (3.6) 

 Under the above conditions, we can make the following remark 
Remark 3.1 

The segment TS  where T

* Sx ∈  contains x  for which )x(f  is minimum. 

 Thus we discard the other segments that do not contain *x .  Then *x  forms the starting point of 
our search. 

 Furthermore, the gradient direction estimated as a result of set of trial points in 
nR  differs from 

that of the true gradient due to experimental error. 

 However, the direction of search would be 

correspondingly uncertain and so may slow the rate of 

convergence of the sequence (see for example [1]). 
 Transforming the estimated gradient vector d is capable of reducing the Euclidean distance 
between the true and estimated gradient direction (see for example [8]).  To this end, we state the 
following: 
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Lemma 3.1 

Let },,{diagT nααα Λ21=  , ,,. nααα Λ== 21  ∑
=

=
n

i
i

1

1α    (3.7) 

and let d be the least squares estimate of the single-valued section fg ∂∈  as in (2.6).  Then 

dgTdg −≤−  for any d. 

Proof 

Let ∑ ′=
=

m

j
jjttM

1
.  But 12 −=− MdgE  as in (2.6).  Hence, 112

TTMTdgE −=−  

12 −= MT 101 ππαα ,M−=  
2kk dgE −= .  It is easy to see that the choice of T minimizes the Euclidean distance so that 

dgTdg −≤−  for all the least-squares approximation d of g.  Thus, instead of search for the minimum 

of f in the direction of d, we consider an iterative scheme started at x  defined in (3.1), which minimizes f 

successively in the direction of the stochastic independent vectors 
∞
=1k

k }Td{ , ∑=
=

−
m

j
jj

k ytMd
1

1 along the 

line kkk Tdx ρ−  as follows: 

1. Compute kk Tdg ≈  

2. Compute the correspondingkρ  

3. Compute kkkk Tdxx ρ−=+1  
4. Has the process converged? 

 Is 01 ππ δδ ,xx kk −+ ?  If yes, then nk xx =+1 .  Where if no, we show that this sequence 

converges strongly to the solution of problem (1.2) 
 
 
 

Theorem 3.1  

Let 
∞
=0k

k }{ρ  be a real sequence satisfying (i) 11010 >∀<<= k, kρρ  (ii) ∑ ∞=
∞

=0k

kρ  (iii) 

∑ ∞<
∞

=0

2

k

kρ  then the stochastic sequence generated by x  and defined iteratively by ,Tdxx kkkk ρ−=+1  

remains in )f(D ∂  and converges strongly to })x(f:x{ 0=∂
∧∧

 
Proof 

 Let kkk

k TdgD −= ρ .  Then }D{ k  is a sequence of independent random variables.  From (2.6) 

0=kED  for each k , thus the sequence of partial sums ∑=
=

k

j
jk D

1
η is a Martingale.  But 

∑ ∑ −==
= =

k

j

k

j

jjj

jk TdgEEDE
1 1

2222 ρη ∑≤
=

−
k

j

jM
1

21 ρ .  Since ∑ ∞<j2ρ  hence, ∞<∑
∞

=1

2

j
jED .  So that 

by a version of Martingale convergence theorem [10], we have ∑ ∞<
∞

=1k
kD .  Thus .Tdgplim kkk

k
0=−

∞→
  

An earlier result in the theory of accretive operations, due to Chidume [2] shows that the sequence,
∞
=0k

k }x{ , 

generated by )f(Dx ∈0  and defined iteratively by )x(fg,gxx kkkkkk ∂∈−=+ ρ1  a single section of 

f∂ , remains in )f(D ∂  and converges strongly to ( )( )xxf:x ∗∗ ∂ .  It follows from his result that our 

sequence converges strongly to the solution of the problem (1.2).  The convergent rate of this scheme is 
further improved if, as in Remark 3.1, the segment TS  for which f attains its minimum is further segmented 
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into z  disjoint sub segments z,,.j,S j,T Λ1
2

=  and the point 
j,Tj Sx

1
∈  is chosen such that )x(f)x(f j

* ≥  

for each j  where the subscript, 1 denotes the first sub segmentation process.  Then, define 

∑

∑

=
=

=

z

j
z

j
j

jj

T

)x(f

)x(fx
x

1

1

1 , 
j,Tj Sx

1
∈ so that by (3.2) and (3.6) }Sx:)x(fmin{)x(f

j,TjjT
*

11 ∈=  

 We discard the 1−j  segments, which do not contain the point 
*

Tx
1

, and denote the remaining 

segment, which contains 
*

Tx
1

 by 
2TS .  Then f  attains its minimum on 

2TS .  
2TS  is further segmented into 

z  disjoint sub segments z,,.j,S j,T Λ1
2

=  and the process repeated until 01 φπ εε ,xx iT
*

iT
*

+−  where 
∗∗ = xTx 0 .  This technique accelerates the convergence of the method indicated in [1] and extends to the 

solution of variational inequality. 
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