
Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004.
Solving the GSM Network problem . W. Gbolagade, R. K. Odunaike, Z. O. Ogunwobi, A.
U. Rufai and K. A. Gbolagade. J. of NAMP

319

Journal of the Nigerian Association of Mathematical Physics,
Volume 8 (November 2004).

On the application of Dijkstra’s algorithms in solving the GSM Network problem

++A.W. Gbolagade1, R.K. Odunaike2, Z. O. Ogunwobi1,
A. U. Rufai1 and K.A. Gbolagade1.

1Department of Mathematical Sciences, Olabisi Onabanjo University, Ago-Iwoye. Ogun State, Nigeria
2Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria

Abstract.

This paper discusses the transportation problem that arises when two
people at different locations are communicating themselves. The authors coded
the Dijkstra’s algorithm and attempted to make the Dijkstra’s algorithm to work
like Flodyd’s algorithm. Java programming language was used to develop the
program for Dijkstra’s algorithm. The results were found to be consistent and
reproducible.

Keywords: Dijkstra’s algorithm, Flodyd’s algorithm, Global System for Mobile Communication (GSM), Java language.

pp 319 - 322
1.0 Introduction.

The concept of GSM, its development, the underlying principles for efficient operations and
implementation, opportunities, the problem and experiences of its operators and users in Nigeria were examined
[3]. In [4], the economic implications of GSM services and the background of telecoms in Nigeria were
discussed. Oguike et al, 2002 [1] compared the difference between Dijkstra and Flodyd’s algorithms.

The assertion in [1] motivated the authors to implement the Dijkstra’s algorithm and made it work like
Flodyd’s algorithm.

2.0. Dijkstra’s algorithm
 One of the standard algorithms for determining the shortest route between any two nodes, towns or
villages in a local area network or road network is the Dijkstra’s algorithm. It can also be used to determine the
most efficient message routes between each, two geographic area in a GSM network.
 The Dijkstra’s algorithm determines the shortest route between a particular node and any other node in
the network. It has a special labelling convention that begins by labelling the nodes temporarily and proceeds
until all the nodes have been permanently labelled. The special labelling convention that Dijkstra’s algorithm
uses is of the form T[x1, x2]x3, P[x1, x2]x3, where T means a temporary label while P means a permanent label, x1
is the distance between the source node and the node to be labeled, x3, while x2 is the node sequence or the node
that will be followed in order to reach the node to be labeled, x3 is the node you are labelling.
 The Dijkstra’s algorithm terminates when all the nodes have been permanently labeled, but it begins by
labelling the source node with the permanent label, P[0, -], s, 0 is the distance from the source node to the node
s, P denotes a permanent label, which, -, means there is no sequence node to the source node.

3.0 Formalization of the Dijkstra’s algorithm
 We used Dijkstra’s algorithm developed in [1]
3.1. Initialization
 The first step of the Dijkstra’s algorithm was to initialize all the variables and sets that would be used.
The following variables and sets were initialized as follows:
3.1.1 The variable, i, initialized as the source node
3.1.2 The set Cj, initialized to empty, would be used to determine the nodes that have not been labelled

permanently and could be reached directly from the source node. This means Cj is the set of all nodes
that have not been labelled permanently and can be reached directly from the nodes, i.

3.1.3 The set Ct, will be initialized to empty. This set would be the set of all temporary labelled nodes.
3.1.4 The set Cp, will be initialized to empty, this set will be the set of all permanently labelled nodes.
3.2. Labelling the Source Node
 Label the source node as follows: P[0, -] I and insert this label into the permanently labelled set.
Therefore, the set permanently labelled node becomes Cp = {[0, -] i}.
3.3. Determination of set, Cj

Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004.
Solving the GSM Network problem . W. Gbolagade, R. K. Odunaike, Z. O. Ogunwobi, A.
U. Rufai and K. A. Gbolagade. J. of NAMP

320

 Determine the set, Cj, as the set of nodes that have not been labelled permanently and can be reached

directly from node i.
3.4. Labelling of the nodes in Cj temporary
 Suppose the set Cj is not empty, and then the nodes in the set, Cj will be labelled temporary. In order to
do this, the following steps can be followed:
3.4.1 Count the elements in set, Cj

Use the variable, Cnt to hold the number of elements in the set, Cj
3.4.2 Initialize count variable to zero
3.4.3 Label a node j in the set Cj, temporary as follows. T[a + dij, I], where a is the distance label in the
permanent label of node i and dij is the distance between node i and node j. If this node has been labelled
temporary, previously, pick the label with minimum distance.
3.4.4 Make this temporary label of node j a number of the set of temporary labelled set. This can be
expressed as follows: Insert (T[a + dij, i] j, Ct) provided that it is not in set, Ct, otherwise, do not insert it into Ct.
3.4.5 Increase the Count Variable
Add 1 to this variable, Cto, this means that Cto = Cto + 1.
3.4.6 Repeat 3.4.3 – 3.4.5, until Cto equal Cnt.
3.4.7 Suppose the set, Cj is empty, then do not perform steps 3.4.1 – 3.4.5
3.4.8 Remove it from temporary labelled set Ct, this can be expressed as follows: remove (T[a, b] j, Ct).
3.4.9 Label it permanently, label the nodes j that have picked, permanently. This can be expressed as
follows: P[a, b]j.
3.5.0 Insert the new permanently labelled node into the set of permanent labels and can be expressed as
follows: insert (P[a, b] c, Cp)
3.5.1 Let i = j and repeat steps 3.4.3 – 3.5.4, until the temporarily labelled set, Ct becomes empty.
3.5.2 Illustration

Using Dijkstra’s algorithm to solve a shortest route problem. Given any Tell-mobile phone company
services in six geographical areas. The satellite distances (in km) among the six areas are given in the network
diagram drawn below. We need to determine the most efficient message routes that should be established
between each two areas in the network.

Solution

The Dijkstra’s algorithm gives the shortest route between a particular node and any other node in the
network. In the light of this, it is necessary to consider particular node and any other node. Taking node 1 as the
source node, we proceed as the algorithm specifies

P[700, 3]2 T[1300, 2]6
T[700, 3]2 T[1200, 4]6
T[800, 1]2 P[1200, 4]6

T[300, 1]3 T[1500, 4]5
T[300, 1]3 T[1100, 3]5
P[1100, 3]5

6 2

5

4 1

3

500

300 200

600

300

700

800

400

800

P[0, -]1
T[1100, 3] 4
T[300, 2] 4
P[300, 2] 4

400

6 2

5

4 1

3

500

300 200

600

300

700

800

400

800

400

Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004.
Solving the GSM Network problem . W. Gbolagade, R. K. Odunaike, Z. O. Ogunwobi, A.
U. Rufai and K. A. Gbolagade. J. of NAMP

321

From the diagram, the following permanently labelled set will be obtained: Cp = {[0, -]1, [700, 3], [300, 1]3,
[300, 2]4, [1100, 3]5, [1200, 4] 6}. Using the above set of [permanently labelled set, the shortest route between

node 1 and any other node can be determined. Shortest route distance between 1 and 6 is shown below.

The shortest distance is 1200km.

4.0 The coding of Dijkstra’s algorithm to find the shortest routes between cities on a map.
Public interface Routes Map
{
int get Distance (city start, city end);
list getDestination (city city);
using data structures
s, the settled nodes at set
private final set settle Nodes = new Hashet ();
private Boolean is settled (city v)
{
return settledNodes contains (v);
}
d, the shortest distance list
private final map shortest Distance=new Hashmap ();
private void setShortest Distance (city city, int distance)
}
public int getshortest Distance (city city)
{
integer d = (integer) shortest Distance get(city);
return (d = = null)? INFINITE_DISTANCE: d int value ();
π, the predecessors tree
Private final ,ap predecessors= new Hash Map ();
Private void set predecessor (city a, city b)
{
Predecessors. Put (a, b);
}
public city get predecessors (city city)
{
return (city) predecessors get (city);
}
Q, the unsettled nodes set
Private final comparator shortest Distance comparator=new comparator ()
}
public int compare (object left, object right)
{
int shortest Distance left=get shortest Distance ((city) left)
int shortest distance Right = get shortest Distance ((city) right);
if (shortest Distance left> shortest Distance Right)
{
return + 1;
}
else if (shortest Distance left < shortest Distance Right)
{
else if (shortest Distance left < shortest Distance Right)

1 2 6

3 4

300 400 300 200

Journal of the Nigerian Association of Mathematical Physics, Volume 8, November 2004.
Solving the GSM Network problem . W. Gbolagade, R. K. Odunaike, Z. O. Ogunwobi, A.
U. Rufai and K. A. Gbolagade. J. of NAMP

322

{
return – 1;

}
else//equal
{
return ((city) left) compare to (right);
}
}
};
Private final shortest unsettled Nodes = new Treeset (shortest Distance comparator);
Private city extract Min ()
{
city city = (city) unsettled Nodes First ();
Unsettled Nodes Remove (city);
Return city;
}

Please note that the curly brace (}) used in the program is the end statement that is used to match the
corresponding (}) begin statement.

5.0 Java idioms used

Java idioms used to flag composition between objects s, the settled nodes set. This one is quite
straightforward. The java collection includes the set interface, d, the shortest distance list.

A straightforward way to implement this in a java is with a map, used to keep the shortest distance
value for every node, π, the predecessor tree

The shortest paths are actually stored in reverse order, from destination to source. Q, the settled nodes
set.

The structure is then looked up for the city with the current shortest distance given by
d ().

6.0 Conclusion
We made an attempt to make the Dijkstra’s algorithm to work like Flodyd’s algorithm first before

giving the implementation in Java language. In the program some functions were used. The objective of the
program was to compute the shortest route between a particular node and any other node in the network. This
was accomplished through designed Java program via the evaluation of the distance between a particular node
any the next or any other node. The program shows the applicability of the concept discuss

References
[1] Oguike, O.E. and Agu, M.N (2002): “Proceedings of the computer association of Nigera, vol. 13 ppl 10 – 119.
[2] M. Devargas (1993): “Network Security NCC” Blackwell Ltd. Oxford, England.
[3] B.U. Ezeh (1999): “Object Technology and Enterprise Computing COAN Conference Proceedings. Vol. 10. Pp

110 – 125.
[4] Aliga, P.A., Onianwa, C.U. and Sadiq, I.F. (2003). Proceedings of the Nigeria Computer Society, Vol. 14 pp183 –

198.

