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Abstract: 

An extended Mono Implicit Runge-kutta (EMIRK) method is considered herein for 

the numerical solution of stiff initial value problems (IVPs) in ordinary differential 

equation (ODEs). The methods are A-stable for 𝒑 = 𝟔, 𝟖 and 𝟏𝟎 . The 𝒑 and  𝒒 are 

the order of the input and output methods respectively. Numerical results are given 

to illustrate the application of the new methods. 
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1. Introduction 
The Mono- Implicit Runge-Kutta (MIRK) method first presented in [1], is a sub-class of the Implicit Runge-Kutta (IRK) method presented 

in [2] for the numerical solution of stiff ODEs. The method in [1] emerged in order to circumvent the computational cost involve in IRK 

method. Over the years considerable attention has been devoted to the MIRK methods because of its efficiency in implementation compare 

to other subclasses of the IRK methods studied [3, 4]. In 1993, Muir and Owren [5] studied the continuous version of the Mono-implicit 

Runge-Kutta Schemes which uses a minimal number of stages for order 1 to 6. Burrage et al [6] in their paper give a complete 

characterization of some subclasses of these methods having a number of stages 𝑠 ≤ 5 and also proof that the order of an s-stage MIRK 

method is at most 𝑠 + 1 .  De Meyer et al [7], studied the condition to be met by Mono-implicit Runge-Kutta method in order to generate a 

Mono-implicit Runge-Kutta-Nystrom (MIRKN) method that are  𝑝 − 𝑠𝑡𝑎𝑏𝑙𝑒 . Muir and Adams [8] studied Mono-implicit Runge-Kutta-

Nystrom (MIRKN) methods that are suitable for system of second order ODEs and derived optimal symmetric methods of order 2, 4 and 6 

.The MIRK method suffer from order reduction when applied to certain stiff ODEs, in order to address these problem, Dow [9], developed 

a family of generalized MIRK methods that do not suffer order reduction when applied to stiff ODEs. The methods proposed by Dow [9] 

do not have second derivative terms, therefore, the need to search for methods with high order, accuracy and stability good properties and 

also retained computational advantage of the MIRK methods leads to the extended mono-implicit Runge-Kutta (EMIRK) method. The idea 

of the second derivative terms was first introduced by Enright [10] for stiff ODEs. The use of second derivative terms in explicit methods 

has been proposed for non-stiff problems by many authors for example see Chan and Tsai [11], Okuonghae [12], Turaci and Ozis [13], 

Aiguobasimwin and Okuonghae [54]. Similarly, for stiff ODEs some authors have proposed implicit methods that incorporate the second 

derivative terms in their methods see Butcher and Hojjati [11], Abdi and Hojjati [16,17],  Okuonghae and Ikhile [18] ,Okuonghae and 

Ikhile in [19] , Ogunfeyitimi and Ikhile [20] , Nwachukwu and Okor  [21]. In the spirit of the authors in the literature, we introduce a class 

of second derivative mono implicit methods for stiff ODEs. 

2. Formulation of the method for ODEs  

        For the initial value problems (IVP) 

𝑦′ = 𝑓(𝑥, 𝑦),       𝑦′′ = 𝑓𝑥 + 𝑓𝑦𝑓 = 𝑔(𝑥, 𝑦),            𝑥𝜖[𝑥0, 𝑋]           𝑦(𝑥0) = 𝑦0                     (1) 

where 𝑓: ℝ𝑠 → ℝ𝑠and 𝑔: ℝ𝑠 → ℝ𝑠. We define the EMIRK method as 

𝑌𝑟 = (1 − 𝑣𝑟)𝑦𝑛 + 𝑣𝑟𝑦𝑛+1 + ℎ∑ 𝑥𝑟𝑗𝑓(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗) + ℎ
2𝑟−1

𝑗=1 ∑ �̅�𝑟𝑗𝑔(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗)
𝑟−1
𝑗=1 ,𝑐𝑟𝜖(0,1),    𝑟 − 1,2…𝑠     (2)                    

and 

𝑦𝑛+1 = 𝑦𝑛 + ℎ∑ 𝑏𝑟(1)𝑓(𝑥𝑛 + 𝑐𝑟ℎ, 𝑌𝑟) + ℎ
2 ∑ �̅�𝑟(1)𝑔(𝑥𝑛 + 𝑐𝑟ℎ, 𝑌𝑟), 𝜃 = 1𝑠

𝑟=1
𝑠
𝑟=1          (3)                               

The 𝑔(𝑥, 𝑦) is the second derivative form of ODEs in (1),  𝑐𝑟 = (𝑐1,    .  .  . , 𝑐𝑠)
𝑇 is the abscissa value and 𝑌𝑟 = 𝑦(𝑥𝑛 + 𝑐𝑟ℎ), 

the coefficients,{𝑣𝑟}𝑟=1
𝑠  ,{𝑥𝑟𝑗}𝑗=1,𝑟=1

𝑟−1,𝑠
 ,{�̅�𝑟𝑗}𝑗=1,𝑟=1

𝑟−1,𝑠
, defined the stages,{𝑏𝑟(𝜃)}𝑟=1

𝑠 and {�̅�𝑟(𝜃)}𝑟=1
𝑠

 are the weight 

polynomials. We shall require 𝑐𝑟 = ∑ 𝑥𝑟𝑗
𝑟−1
𝑗=1 + ∑ �̅�𝑟𝑗

𝑟−1
𝑗=1 + 𝑣𝑟 and 𝜃 = 1  i.e  𝑏𝑟(1) = 𝑏𝑟and �̅�𝑟(1) = �̅�𝑟 . Equation (2) is an 

extension of the methods in [15], and a subclass of the methods in [2, 22]. A survey of some second derivative A-stable 

methods can be found in [[15], [21], [19],]. The paper is organized as follows. In section 2, the order condition and stability 

analysis of the EMIRK methods are stated. Section 3 is devoted to the derivation of the EMIRK methods and section 4, 

numerical results are presented. 
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The Butcher tableaux of the methods in (2) is 

     c         𝑣    𝑋             �̅�           =     𝑐1          𝑣1          𝑋11 ……  𝑋1𝑠                         �̅�11 ……    �̅�1𝑠          

                       𝑏(1)𝑇  �̅�(1)𝑇               ⋮               ⋮                ⋮                                  ⋮                          (4) 

                                                𝑐𝑠        𝑣1           𝑋1𝑠 ……  𝑋𝑠𝑠          �̅�11 ……    �̅�1𝑠 

                                                                          𝑏1(1)
𝑇   …  𝑏𝑠(1)

𝑇      �̅�1(1)
𝑇   … �̅�𝑠(1)

𝑇  

 
 

Where𝑐 = (𝑐1,    .  .  . , 𝑐𝑠)
𝑇,𝑣 = (𝑣1,   .  .  . , 𝑣𝑠)

𝑇,𝑏 = (𝑏1(1),   .  .  . , 𝑏(1)𝑠)
𝑇, �̅� = (�̅�1(1),   .  .  . , �̅�𝑠(1))

𝑇 , 𝑋  𝑎𝑛𝑑 �̅� are the s 

by s matrix whose (𝑖 , 𝑗)𝑡ℎ component are 𝑥𝑖𝑗  and �̅�𝑖𝑗 . 

3. The order condition of the EMIRK methods 

The order conditions of the methods in (2) are obtained by Taylor’s series expansion approach about 𝑥𝑛 and equating the 

power of ℎ to zero gives stage order 𝑞 

𝐶 = 𝑋𝑒 + 𝑣; 

 
𝑐𝑗

𝑗!
=  

𝑋𝑐𝑗−1

(𝑗−1)!
+ 

�̅�𝑐𝑗−2

(𝑗−2)!
+ 

𝑣

𝑗!
    𝑗 = 2(1)𝑞,                                     (5) 

and the method of order p  

𝑏𝑇𝑒 = 𝑒                                                                    (6) 

    
1

𝑗!
=
𝑏𝑇𝑐𝑗−1

(𝑗 − 1)!
+  

�̅�𝑇𝑐𝑗−2

(𝑗 − 2)!
+ 
𝑣

𝑗!
    𝑗 = 2(1) 𝑝. 

4. Stability Analysis 

In this section our interest is on the analysis of the stability of the method in (2) in what follows is the derivation of the 

stability function of the method in (2). 

Theorem 4.1: let 𝑅(𝑧) denote the stability function for an EMIRK method. Then for a linear differential equation  𝑦(𝑥)′ =
ƛ𝑦(𝑥), the methods in (2) and (3) has the stability function 

𝑅(𝑧) =
𝐼−𝑧𝑋−𝑧2�̅�+𝑧𝑒𝑏𝑇+𝑧2�̅�𝑇−𝑧𝑣𝑏𝑇−𝑧2𝑣�̅�𝑇

𝐼−𝑧𝑋−𝑧2�̅�−𝑧𝑣𝑏𝑇−𝑧2𝑣�̅�𝑇
,  𝑧 = ƛℎ.                                     (7) 

Proof: for the special problem defined by  𝑦′ = ƛ𝑦(𝑥), the stages derivatives 𝑓 and 𝑦′′ = 𝑔 is related to the stage values 𝑌 

by 𝑓 = ƛ𝑦 and 𝑔 = ƛ2𝑦. To ease our prove, we take  𝑒 = (1, … ,1)𝑇  and 𝑣 = (𝑣1… , 𝑣𝑠)
𝑇, Hence, (2) reduces to the form 

(𝐼 − 𝑧𝑋 − 𝑧2�̅�)𝑌 − 𝑣𝑦𝑛+1 = (𝑒 − 𝑣)𝑦𝑛                                                         (8)  

and   

(−𝑧𝑏𝑇 − 𝑧2�̅�𝑇)𝑌 + 𝑦𝑛+1 = 𝑦𝑛                                                                        (9) 

From (8) we have, 

𝑌 =
(𝑒−𝑣)𝑦𝑛+𝑣𝑦𝑛+1

(𝐼−𝑧𝑋−𝑧2�̅�)
                                                                         (10) 

Inserting (10) into (9) gives 

(−𝑧𝑏𝑇 − 𝑧2�̅�𝑇) (
(𝑒−𝑣)𝑦𝑛+𝑣𝑦𝑛+1

(𝐼−𝑧𝑋−𝑧2�̅�)
) + 𝑦𝑛+1 = 𝑦𝑛                                                 (11) 

Multiplying both side of the (11) by (𝐼 − 𝑧𝑋 − 𝑧2�̅�) gives 

(−𝑧𝑏𝑇 − 𝑧2�̅�𝑇)((𝑒 − 𝑣)𝑦𝑛 + 𝑣𝑦𝑛+1) + (𝐼 − 𝑧𝑋 − 𝑧
2�̅�)𝑦𝑛+1 = (𝐼 − 𝑧𝑋 − 𝑧

2�̅�)𝑦𝑛        (12) 

Simplifying (12) and collecting like terms yields 

[𝑣(−𝑧𝑏𝑇 − 𝑧2�̅�𝑇) + (𝐼 − 𝑧𝑋 − 𝑧2�̅�)]𝑦𝑛+1 = [(𝐼 − 𝑧𝑋 − 𝑧
2�̅�)(𝑒 − 𝑣)(−𝑧𝑏𝑇 − 𝑧2�̅�𝑇)]𝑦𝑛.    (13) 

From (13) we obtain 𝑦𝑛+1 = 𝑅(𝑧)𝑦𝑛. Thus the stability function is 

𝑅(𝑧) =
𝐼−𝑧𝑋−𝑧2�̅�+𝑧𝑒𝑏𝑇+𝑧2�̅�𝑇−𝑧𝑣𝑏𝑇−𝑧2𝑣�̅�𝑇

𝐼−𝑧𝑋−𝑧2�̅�−𝑧𝑣𝑏𝑇−𝑧2𝑣�̅�𝑇
                                                               (14) 

5. Construction of the EMIRK methods  

In this section, we will derive method (2) that has order p not equal to stage order q. The approach adopted here, in the 

derivation of the method in (2) is similar to that used in [19] and [23].  

5.1 EMIRK method of order p=1, s=1  

For example, fixing 𝑟 = 1, and 𝑣1 = 0 in (2) gives  

𝑌1 = 𝑦𝑛                                                                                        (15) 

Similarly, we obtain the output method of order 𝑝 = 1 in (3). That is 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑌1)                                                               (16) 
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The tableau for (15) is 

 

 

                 c          𝑣          𝑋               �̅�            =           0    0         0      0               (17) 

                                     𝑏(1)𝑇         �̅�(1)𝑇                                     1      0     
 

 

 

The method in (15 and 16) in an explicit Euler’s method, which is not of interest in this paper but such scheme are suitable 

for non-stiff ODEs. The Euler’s scheme has an interval of absolute stability of [-2, 0].       

5.2 EMIRK method of order p=3, s=2  

Take 𝑟 = 2  in (2) and fix 𝑣1 = 1  gives 

𝑌1 = 𝑦𝑛 

 𝑌2 = 𝑦𝑛+1                                              (18) 

 𝑦𝑛+1 = 𝑦𝑛 +
2ℎ

3
𝑓(𝑥𝑛 , 𝑌1) +

ℎ

3
𝑓(𝑥𝑛+1, 𝑌2) +

ℎ2

6
𝑔(𝑥𝑛 , 𝑌1) 

The picture of the scheme in (18) is  

 c     𝑣        𝑋              �̅�           =     0        0          0    0    0      0         

                 𝑏(1)𝑇       �̅�(1)𝑇           1         1         0    0     0      0                                (19) 

                                                                               
2

3
    

1

3
     

1

6
     0    

 

The algorithm in (18) is of order p=3, the interval of absolute stability of the method is [-2, 0] and such scheme is good for 

the numerical solution of non-stiff ODEs (1). Our interest in this study is implicit Runge-Kutta method. Therefore, we give 

below some suitable methods emanating from (2) and (3) for stiff problems (1). 

5.3 EMIRK method of order p=6, q=5, s=3  

Fixing p=6, q=5, s=3 in (5) and (6) and solving the resulting system of linear equations in terms of {𝑐𝑟}𝑟=1
3  such that 𝑐1 ≠

 𝑐2 ≠ 𝑐3. The resulting tableau of the method of order p=6 is 

 

 c      𝑣          𝑋       �̅�           =     0    0        0       0       0        0      0        0 

                  𝑏(1)𝑇  �̅�(1)𝑇           1    1         0       0       0        0      0         0                             (20) 

                                                 
3

4
    

1836

2048
      

78

2048
  
−378

2048
   0       

9

2048
   

27

2048
    0 

                                                                    
458

1620
  
1674

1620
  
−512

1620
    

39

1620
    

−135

1620
     

−384

1620
    

The stability function of the method in (20) is 𝑅(𝑧) = −
−960−204𝑧+12𝑧2+10𝑧3+𝑧4

960−720𝑧+228𝑧2−38𝑧3+3𝑧3
and plotting the stability function of (20) 

in boundaries locus sense shows that the scheme in (20) is 𝐴 − 𝑠𝑡𝑎𝑏𝑙𝑒. 

Note: In the other part of this paper, the EMIRK method of order p=6, q=5, s=3 is represented by EMIRK6. 

Figure 1: Stability plot for EMIRK6 
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5.4 EMIRK method of order p=8, q=7, s=4 

Similarly, setting p=8, q=7, s=4 in (5) and (6) and solving the resulting system of linear equations in terms of {𝑐𝑟}𝑟=1
4  such 

that 𝑐1 ≠ 𝑐2 ≠ 𝑐3 ≠ 𝑐4.The resulting tableau of the method of order p=8 is; 

 

 c       𝑣    𝑋       �̅�                  =     0        0         0      0         0           0            0      0        0         0 

                   𝑏(1)𝑇  �̅�(1)𝑇            1       1          0      0          0          0            0        0       0        0 

                                              
1

2
      

96

192
       

18

192
    

−18

192
        0         0           

1

192
    

1

192
     

−8

192
        0      (21) 

                                             
3

4
     

5724

 8192
    

474

8192
  
−918

8192
    

864

8192
        0          

27

8192
   

45

8192
    

−144

8192
      0 

                                                                
1910

11340
  
3510

11340
  
−4320

11340
   
10240

11340
    

93

11340
   
−189

11340
   
−1728

11340
   
−1536

11340
 

The stability function of the method in (21) is 𝑅(𝑧) = −
−161280−40320𝑧+480𝑧2+1440𝑧3+252𝑧4+22𝑧5+𝑧6

161280−120960𝑧+39840𝑧2−7680𝑧3+948𝑧4−74𝑧5+3𝑧6
  and the method in 

(21) is 𝐴 − 𝑠𝑡𝑎𝑏𝑙𝑒 has showed in the stability plot in Figure 2. 
 

Figure 2: Stability plot for EMIRK8 

 
5.5 EMIRK method of order p=10, q=9, s=5 

Setting s=5, 𝑐 = (0,1,
1

3
,
2

3
,
4

5
)𝑇 in (5) and (6) yield the EMIRK methods of order 9 with the modified Butcher tableaux of the 

resulting coefficients given below. 

c    𝑣    𝑋       �̅�                    𝑣 = (0,1,
939

2187
,
1248

2187
,
1269760

1953125
)𝑇                                   (22)             

          𝑏(1)𝑇  �̅�(1)𝑇 
 

𝑋 =

[
 
 
 
 
 
 
 

0 0 0 0 0
0 0 0 0 0
147

2187

−114

2187
0

−243

2187
0

114

2187

−147

2187

243

2187
0 0

83300

1953125

−140480

1953125

181440

1953125

168480

1953125
0]
 
 
 
 
 
 
 

 

 

�̅� =

[
 
 
 
 
 
 
 

0 0 0 0 0
0 0 0 0 0
5

2187

4

2187

−54

2187

−27

2187
0

4

2187

5

2187

−27

2187

−54

2187
0

2936

1953125

4544

1953125

−19008

1953125

−30672

1953125
0]
 
 
 
 
 
 
 

 

𝑏𝑇 = [
2076865

18439680

4253200

18439680

2507760

18439680

−40007520

18439680

49609375

18439680
] 

�̅�𝑇 = [
66542

18439680

−159152

18439680

−843696

18439680

−4667544

18439680

−3281250

18439680
] 
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The stability function is 

𝑅(𝑧)

= −
−183708000 − 36741600𝑧 + 4173120𝑧2 + 2426760𝑧3 + 417390𝑧4 + 41790𝑧5 + 2742𝑧6 + 119𝑧7 + 3𝑧8

183708000 − 146966400𝑧 + 50939280𝑧2 − 10500840𝑧3 + 1453710𝑧4 − 142260𝑧5 + 9903𝑧6 − 466𝑧7 + 12𝑧8
. 

The stability plot for the method of order 𝑝 = 10  in Figure 3 shows that the method in (22) is  𝐴 − 𝑠𝑡𝑎𝑏𝑙𝑒 
 

Figure 3: Stability plot for EMIRK10 

 
 

6. Numerical Experiment 

In this section, we present numerical results showing the implementation and accuracy of the constructed EMIRK6, 

0        0       0       0       0        0      0        0 

1        1       0       0       0        0      0         0                             

3

4
       

1836

2048
   

78

2048
  
−378

2048
    0      

9

2048
   

27

2048
      0 

                  
190

540
    

−162

540
   
512

540
    

21

540
      

27

540
      0    

Our interest here is to compare the results of our methods with the results obtained from some existing methods of order 6. The 

Maximum Error= 𝑀𝑎𝑥‖𝑦𝑖 − 𝑦(𝑥𝑖)‖ represents error between the computed solution 𝑦(𝑥𝑖) and the exact solution 𝑦𝑖. The order of 

EMIRK6 is 𝑝 = 6, see section 5 of this article. Computational experiments are done by applying the EMIRK6 methods to the following 

problems: 

Problem 1: Consider the system of differential equations [20], 

{
  
 

  
 𝑦1

′(𝑥) = −21𝑦1 + 19𝑦2 − 20𝑦3, 𝑦1(𝑥) =
1

2
(𝑒−2𝑥 + 𝑒−40𝑥(cos(40𝑥) + sin(40𝑥))),

𝑦2
′ (𝑥) = 19𝑦1 − 21𝑦2 + 20𝑦3, 𝑦2(𝑥) =

1

2
(𝑒−2𝑥 − 𝑒−40𝑥(cos(40𝑥) − sin(40𝑥))),

𝑦3
′ (𝑥) = 40𝑦1 − 40𝑦2 − 40𝑦3, 𝑦2(𝑥) = −𝑒

−40𝑥(cos(40𝑥) − sin(40𝑥)),

𝑥𝜖[0, 1],       𝑦(0) = [1, 0,−1]𝑇

 

 

We have solved this problem at ℎ = 0.05, 0.025, 0.0125 𝑎𝑛𝑑 0.00625 and compared the result with method GSDLMM [20] and BVMs 

[24].  

Table 1: Numerical results for problem 1 on interval  0 < 𝑥 ≤ 1. 
 

𝑥 

EMIRK6 (20) 

(rate) 

GSDLMM (𝑝 = 6)[20] 

(rate) 

BVMs( 𝑝 = 6 )[24] 

(rate) 

0.05 2.67 × 10−3 

(--) 

3.0 × 10−2 

(--) 

5.70 × 10−2 

(--) 

0.025 8.92 × 10−5 

(4.9) 

3.55 × 10−3 

(3.07) 

8.70 × 10−3 

(2.70) 

0.0125 1.37.0 × 10−6 

(6.02) 

2.226 × 10−4 

(3.97) 

4.90 × 104 

(4.20) 

0.00625 1.92 × 10−8 

(6.15) 

5.86 × 10−6 

(5.27) 
1.20 × 10−5 

(5.40) 

 

Table 1 show that the new method EMIRK6 performs better in terms of accuracy than the existing method herein and are well suited for 

the integration of stiff system in ODEs. 

Problem 2: Non-linear stiff system [20], 

{

𝑦1
′ = −1002𝑦1 + 1000𝑦2

2,   𝑦1(𝑥) = 𝑒
−2𝑥 ,

𝑦2
′ = 𝑦1 − 𝑦2(1 + 𝑦2),   𝑦2(𝑥) = 𝑒

−𝑥

𝑥 ∈ [0, 1],    𝑦(0) = [1, 1]𝑇
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Table 2: the results of the numerical integration at 𝑁 = 125 are presented to show the results for the EMIRK6 (20), SDAM [25] and 

BVMs [24] on problem 2 for fixed step size ℎ = 0.008. 

In like manner, the numerical results in Table 2 show that the new methods are capable of giving accurate and stable results, hence 

EMIRK6 is better in terms of accuracy than the SDAM [25] and BVMs [24]. 
 

7. Conclusion 

In this paper, a family of A-stable EMIRK method is proposed for the numerical solution of stiff IVPs in ODEs. The stability analysis in 

section 4 and the plot in Fig. 1-3 show that the methods possess zero and A-stability properties. The numerical results in Table 1-2 is an 

evident that the proposed methods perform better than some existing methods in the literature, see Table 1-2.   
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Method 

 

Order 

 

N 

 

h 
𝑦1 

(Max|𝑦𝑖 − 𝑦(𝑥𝑖)|) 
𝑦2 

(Max|𝑦𝑖 − 𝑦(𝑥𝑖)|) 
EMIRK6(20) 6 125 0.008 6.200 × 10−17 5.55 × 10−17 

SDAM [25] 6 125 0.008 1.63 × 10−14 0.00 

BVMs [24] 6 125 0.008 6.61 × 10−12 6.74 × 1012 


