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Abstract 

The Merk-Chao-Fagbenle (MCF) method is employed in the calculation of fluid flow 

and heat transfer over a non-isothermal horizontal circular cylinder in cross flow. 

The series developed with this method and the results of the wall derivatives of 

temperature functions was used directly for the heat transfer calculations. At Prandtl 

number (Pr) = 0.7 and pressure gradient (Λ) =0, the wall derivatives of temperature 

functions were taken from the table provided. This table,  the result derived from the 

calculations of temperature wall derivatives by the above procedure for the two 

parameters M-C-F problem, the Prandtl number(Pr) and the pressure gradient(∧) 

are input into the modified Merk’s series of Chao and Fagbenle after the third 

parameter, the temperature parameter(𝜸) for the non-isothermal case has been 

evaluated. The heat transfer calculations were carried out and the results compared 

with the results of Chao and Fagbenle at a temperature exponent (a) = 0. The results 

are in good agreement. Other results at various Λ’s and a’s are presented in tables 

and graphs. The close agreement of this results with the results of Chao and 

Fagbenle confirms the correctness of the MCF procedure. 
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1.  Introduction  
The phenomena of flow and heat transfer in the boundary layer over an immersed solid object is encountered in numerous 

industrial and manufacturing process. Notwithstanding the importance of the detailed kinematics of the flow field, it is 

readily recognized that reliable information on the rate of momentum and heat transfer between the fluid and the submerged 

object is frequently needed while performing process engineering and equipment design calculations. This information is 

conveniently expressed using the relevant dimensionless parameters such as the skin friction coefficient and Nusselt 

number as functions of the pertinent physical and kinematic variables expressed in dimensionless form as Reynolds and 

Prandtl numbers and the other system variables. This functional relationship is strongly dependent on the geometry, that is, 

the shape and orientation of the submerge object. Heat transfer in a Newtonian fluid from external surface of a circular 

cylinder is the subject of this investigation. Other industrial processes which rely on this thermal boundary layer concept 

are hot rolling, wire drawing, fiber-glass and paper production, gluing of labels on hot bodies, the design of heat 

exchangers, etc.  

Blasius [1] was the first to apply the series-based expansion methods to the boundary layer fluid flows and the method has 

continued to be developed rapidly and employed by such researchers as Gortler [2] and Merk [3]. Generally speaking, the 

Blasius series is quite effective for fluid flows over blunt objects like cylinders. In the case of slender bodies, an excessive 

number of terms would be required in the polynomial representation and the series surfers from slow convergence. Merk 

[3] provided a procedure which belongs to the category of ‘wedge methods’ and which provides a rigorous refinement of 

the local similarity concept. Merk scheme makes possible rapid calculations of the significant boundary layer quantities 

(skin friction, heat transfer, mass transfer, etc) with the aid of a limited number of universal functions which can be 

tabulated once and for all Chao and Fagbenle [4]. An advance in the accuracy of boundary layer series solution was  
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therefore made possible by Merk, who refined the ‘wedge method’ proposed by Meksyn [5] by choosing to treat the wedge 

parameter (𝛬) as an independent variable rather than as a function of the stream wise coordinate, (𝜉). An error in the form 

of the series presented by Merk was found by independent researchers, Chao and Fagbenle [4]. Chao and Fagbenle put 

forward a corrected form of Merk series and used it to perform a universal, laminar boundary layer analysis for the forced 

flow of Newtonian fluids over isothermal bodies. Since then, the MCF approach has been used with success for a family of 

boundary layer solutions  

Many researchers have used this method successfully in investigating boundary layer problems. Cameron [6] used the MCF 

equation to investigate mixed, forced and natural convection from two-dimensional or axisymmetric bodies of arbitrary 

contour. Meissner [7], used the same method for mixed convection to power-law fluids from two-dimensional or 

axisymmetric bodies, with huge success. Recently Amoo [8] presented a comparative analysis of numerical methods 

including the MCF series applied to non-similar boundary layer-derived infinite series equation. By introducing the two-

parameter MCF series into the transformed boundary layer equations for non-isothermal surfaces, there resulted a set of 

ordinary differential equations with three parameters, the pressure gradient (Λ), the Prandtl number (Pr) and the 

temperature parameter (𝛾). Therefore, by assigning numerical values to these parameters, this set of equations was solved 

so that the results for the flow field and the heat transfer was expressed in terms of universal functions, Falana, [9], Falana 

and Fabgenle, [10]. Solutions were obtained for combinations of the non-isothermal parameters for various combinations of 

the temperature exponent, the Prandtl number, and the pressure gradient 

In this work, the universal wall derivative of temperature functions derived from the MCF series [9] was applied to the 

calculation of fluid flow and heat transfer over a non-isothermal horizontal circular cylinder in cross flow.  
 

2. Problem Formulation     

The Merk-Chao-Fagbenle method is strictly applicable to incompressible, uniform property, laminar boundary layer flows. 

The MCF equations governing the flow and heat transfer for a non-isothermal surfaces are not re-derived here. They are 

solved for wall derivatives of universal temperature functions (𝜃′𝑖 , 𝑖 = 0,1,2,3) using FORTRAN 77 and have been 

tabulated once and for all [9].  The table for the wall derivative of universal functions have also been presented in [10]. For 

pressure gradient, (Λ=0), and Prandtl, (Pr=0.7), the table for these values is made available in Table 1. 

  

3. Methodology. 

 Some amount of theoretical analysis for the two- dimensional boundary layer flow over the front portion of a horizontal 

circular cylinder can be found in literature. A limited amount of experimental results are also available. Hence the flow 

configuration provides a good opportunity for ascertaining the limitations of as well as the strength of Merk’s method. This 

case was used by Chao and Fagbenle, [4] in their study of Merk’s procedure for constant wall temperature body.                           

                  

Main Stream Velocity Distribution. 

A basic input to the Merk-Chao-Fagbenle’s procedure is the information on the mainstream velocity distribution. The 

velocity distribution for the flow configuration has significant influence on the various computed boundary layer quantities. 

Therefore, to compute our boundary layer quantities, we first consider the potential velocity distribution [9]; 
𝑈

𝑈∞
 = 2Sin (

2𝑥

𝐷
).                                             (1)                     
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D
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Figure 1. Flow over a circular cylinder  

                                     

The MCF series employed in this work is stated as follows: 
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𝜃(𝜉, 𝜂) = 𝜃0((∧, 𝜂) + 2𝜉 (
𝑑 ∧

𝑑𝜉
) 𝜃1(∧, 𝜂)  + 𝛾𝜃2(∧, 𝜂) + 𝛾2𝜉 (

𝑑 ∧

𝑑𝜉
) 𝜃3(∧, 𝜂)  

+ 4𝜉2 (
𝑑2 ∧

𝑑𝜉2
) 𝜃1(∧, 𝜂) + ⋯ 

(2) 

The calculation begins with an evaluation of the dimensionless stream wise coordinate (𝜉) and the wedge variable or the 

pressure gradient (∧) according to equations (3) and (4). 

𝜉 = ∫
𝑈(𝑥)

𝑈∞
(

𝑟

𝐿
)

2 𝑑𝑥

𝐿
 

𝑥

0
         (3) 

∧=
2𝜉

𝑈
 

𝑑𝑢

𝑑𝜉
= 2 (

𝐿

𝑟

𝑈∞

𝑈(𝑥)
)

2

{∫ (
𝑟

𝐿
)

2𝑥

0

𝑈(𝑥)

𝑈∞

𝑑𝑥

𝐿
}

𝑑(
𝑈

𝑈∞
)

(𝑥/𝐿)
      (4) 

The reference velocity (𝑈∞) and length (L) may be any convenient quantities appropriate to the problem under 

consideration; they are constants.  

Whenever feasible, it is desirable to express 
𝑈(𝑥)

𝑈∞
 and 

𝑟

𝐿
 as a polynomial of  𝑥/𝐿. 

Table 1:  Wall derivatives of temperature functions for Pr = 0.7  

∧ 𝜃0
′ (∧ ,0) 𝜃1

′(∧ ,0) 𝜃2
′ (∧ ,0) 𝜃3

′ (∧ ,0) 

-0.15 

-0.10 

 

-0.05 

0.00 

 

0.05 

0.10 

 

0.20 

0.30 

 

0.40 

0.50 

 

0.60 

0.70 

 

0.80 

0.85 

 

0.90 

0.95 

 

1.00 

0.36437340 

0.38697190 

 

0.40223690 

0.41391300 

 

0.4234000 

0.43139610 

 

0.44438450 

0.45469960 

 

0.46323390 

0.47049320 

 

0.47679620 

0.48235520 

 

0.48731890 

0.48961240 

 

0.49179500 

0.49387680 

 

0.49586610 

-0.73064340E-10 

-0.11286630E-09 

 

-0.11731800E-09 

-0.12072300E-09 

 

-0.12348970E-09 

-0.12582120E-09 

 

-0.12960830E-09 

-0.13261570E-09 

 

-0.13510350E-09 

-0.13721970E-09 

 

-0.13905670E-09 

-0.14067680E-09 

 

-0.14212320E-09 

-0.14279140E-09 

 

-0.14342750E-09 

-0.14403400E-09 

 

-0.14461340E-09 

-0.47564870E-05 

-0.70105800E-05 

 

-0.87854970E-05 

-0.10302160E-04 

 

-0.11648920E-04 

-0.12872300E-04 

 

-0.15052850E-04 

-0.16978330E-04 

 

-0.18719960E-04 

-020321000E-04 

 

-0.21810020E-04 

-0.23207220E-04 

 

-0.24527370E-04 

-0.25162150E-04 

 

-0.25781650E-04 

-0.26386930E-04 

 

-0.26978860E-04 

-0.28152810E-14 

-0.10904380E-13 

 

-0.13668280E-13 

-0.16030270E-13 

 

-0.18127830E-13 

-0.20033400E-13 

 

-0.23430270E-13 

-0.26430190E-13 

 

-0.29144000E-13 

-0.31639060E-13 

 

-0.33959780E-13 

-0.36137600E-13 

 

-0.38195540E-13 

-0.39185140E-13 

 

-0.40150950E-13 

-0.41094650E-13 

 

-0.42017570E-13 

 

For a two-dimensional boundary layers, one sets 𝑟 = 𝐿.  Hence, the expression 𝑟 𝐿⁄  drops out of the computation, as a 

result of this, a straightforward algebraic equations for 𝜉 and ∧ was obtained and the determination of 2𝜉
𝑑∧

𝑑𝜉
  and 4𝜉2 𝑑∧2

𝑑𝜉2   
 

and the expression for the temperature parameter, (𝛾) in equation (2) were also derived from equations (3) and (4). 

At the forward stagnation point, 𝑥 =  𝜉 = 0  and   ∧= 1 or 
1

  2
, corresponding respectively to the two-dimensional or 

axisymmetrical boundary layers. The local heat transfer coefficient is given by: 

𝑁𝑢 =
ℎ𝐿

𝑘
=

𝑞𝑤𝐿

𝑘(𝑇𝑤−𝑇∞)
 =  

−𝐿
𝑑𝑇

𝑑𝑦
 @ 𝑦=0

𝑇∞−𝑇𝑤
                                                                         (5) 

𝑁𝑢
𝑅𝑒

1
2

⁄   =
𝑟

𝐿

𝑈(𝑥)

𝑈∞
(2𝜉)−1

2[−𝜃′(Λ, 0)]     (6) 
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With the aid of Table 1, the local heat transfer coefficient can be obtained by substituting 𝜂 = 0   at the wall in equation (2) 

as follows: 

𝑁𝑢𝑅𝑒−1
2 =

𝑟

𝐿

𝑈(𝑥)

𝑈∞

(2𝜉)−1
2 [𝜃0

′ (∧ ,0) + 2𝜉 (
𝑑 ∧

𝑑𝜉
) 𝜃0

′ (∧ ,0)

+ 𝛾𝜃2
′ (∧ ,0) + 

+𝛾2𝜉 (
𝑑 ∧

𝑑𝜉
) 𝜃0

′ (∧ ,0) + 4𝜉2 (
𝑑2 ∧

𝑑𝜉2
) 𝜃0

′ (∧ ,0) + ⋯ ] 

(7) 

   where  𝑅𝑒 = 𝑈∞𝐿/ν,  Re= the Reynolds number and ν= kinematic viscosity  

For a particular Prandtl number, which in this case is Pr = 0.7 (Table 1) 

The universal functions (𝜃′𝑖 , 𝑖 = 0,1,2,3) which are made available in Table1 depend on the Prandtl number as a 

parameter. Making use of the MCF procedure, the local heat transfer for flow and heat transfer over a horizontal circular 

cylinder containing three parameters is then calculated.   

 

The local heat transfer coefficient over a surface of non-uniform temperature is given by equation (7). The following 

expressions   𝜉 2𝜉
𝑑∧

𝑑𝜉
,  4𝜉2 𝑑2∧

𝑑𝜉2,   are then computed. 

The reason for the consideration of the above equation is the fact that many other numerical works on this flow 

configuration are based on such distribution.  Figure 2 shows the variation of 𝜉 and ∧

 𝑤𝑖𝑡ℎ ϕ 𝑤ℎ𝑖𝑙𝑒  𝐹𝑖𝑔𝑢𝑟𝑒 3 𝑒𝑥ℎ𝑖𝑏𝑖𝑡𝑠 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 2𝜉 
𝑑∧

𝑑𝜉
,  𝑎𝑛𝑑 4𝜉2 𝑑2∧

𝑑𝜉2  with    ϕ. 

 

    
                     Φ, Degree      Φ, Degree  

Figure 2. Variation of  𝜉 and   ∧ with  ϕ over the front  Figure 3. Variation of  2𝜉 
𝑑∧

𝑑𝜉
   and   4𝜉2 𝑑2∧

𝑑𝜉2  with   ϕ    

  portion of a circular Cylinder in cross flow.    over the front portion of a Circular cylinder in cross flow. 
 

It is worthy of note that the minimum pressure occurs when   ∧  becomes zero. A common feature exhibited by the four 

curves as also noted by Chao and Fagbenle, [4] is that, at small ϕ, they are slowly varying functions of   ϕ . As the region 

of minimum pressure is approached, they become very sensitive to small changes in   ϕ . M-C-F procedure has a wider 

range of applicability when the external flow is described by the potential theory than in the case of measured profiles. This 

is so because as figure 3 shows, the coefficients  2𝜉 
𝑑∧

𝑑𝜉
   and   4𝜉2 𝑑2∧

𝑑𝜉2   for potential flow velocity attain large values 

comparatively much later than in the case of measured profiles Chao and Fagbenle, [4]. 

  

The temperature parameter for the non-uniform surface for the horizontal circular cylinder in cross flow is defined as 

follows: 

𝛾 =  
2𝜉

𝑑

𝑑𝜉
(𝑇𝑤(𝑥)−𝑇∞)

(𝑇0−𝑇∞)
         (13) 

Stating Tw (x)-T∞= (T0-T∞)𝑒
𝑎𝑥

𝐿  , the initial temperature variation on the surface of the horizontal circular cylinder in cross 

flow [9].      

4.  Results and Discussion 

The results were generated from equation (7). The values of the universal wall derivatives of temperature functions (𝜃′𝑖 ,
𝑖 = 0,1,2,3) were taken from Table 1. The equation was programmed using FORTRAN 77, the results were imported into 

an EXCEL Worksheet for graphing. 

The effects of the Prandtl number (Pr) and the temperature exponent, a, are shown in figures 4-11   When the temperature 

exponent, a, was set to zero, that is, a= 0; we recovered the results of Chao and Fagbenle for the isothermal horizontal  
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cylinder in cross flow, table 2. The heat transfer result of the M-C-F procedure for the potential external velocity 

distribution for Prandtl of Λ. At low Prandtl numbers, the wall temperature derivatives for i =1, 2, and 3 are relatively small 

compared to the function (𝜃′𝑖 , 𝑖 = 0)  and hence reduce the effect of the ssforward stagnation point. This in effect gave rise 

to low values for the Nusselt numbers for these Prandtl numbers.  

In figures 4, 5, 8 and 9 when a, the temperature exponent is positive, heat transfer from the front portion of the horizontal 

circular cylinder in cross flow decrease slightly and thereafter continue to increase for the particular values of Λ. On the 

other hand, in figures 6, 7, 10, and 11 when a, the temperature exponent is negative, heat transfer from the same portion of 

the cylinder increases gradually in the early  part of the front portion and decrease rapidly for every value of Λ.                

Table 2:  Computations showing comparison of the Local Nusselt number, 𝑁𝑢𝑅𝑒−1/2 for flow over a circular cylinder with 

Chao and Fagbenle [4] for Pr = 0.7 and temperature exponent, 𝑎 = 0. 
 

 

 

 

 

 

 

 

 

   

 
Figure 4. Heat transfer over the front portion of a non-isothermal horizontal circular cylinder in cross flow for Pr = 0.7, a = 0.2 

 
Figure 5.   Heat transfer over the front portion of a non-isothermal circular   cylinder in cross flow for Pr = 0.7, a =0.2 

                                    

                    
Figure 6. Heat transfer over the front portion of a non-isothermal circular   cylinder in cross flow for Pr = 0.7, a = -0.2 
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Figure 7.  Heat transfer over the front portion of a non-isothermal   Figure 8.  Heat transfer over the front portion of a non-isothermal 

circular cylinder in cross flow, for Pr = 0.7, a = -0.2     circular cylinder in cross flow, for Pr = 0.7, a = 0.8   

   
Figure 9.  Heat transfer over the front portion of a non-isothermal    Figure10. Heat transfer over the front portion of a non-isothermal 

circular cylinder in cross flow, for Pr = 0.7, a = 0.8   circular cylinder in cross flow, for Pr = 0.7, a = - 0.8 

 
Figure. 11. Heat transfer over the front portion of a non-isothermal circular cylinder in cross flow, for Pr = 0.7, a = -0.8  
 

4.  CONCLUSION 
The two-parameter Merk’s series which was corrected by Chao and Fagbenle and applied to a constant wall temperature or isothermal surface has been 

applied to a variable or non-isothermal horizontal circular cylinder in cross flow. In addition to the MCF two-parameter problem, a third parameter known 

as the temperature parameter came up in the non-isothermal case. The temperature parameter was evaluated and incorporated into the MCF series and was 
used for the calculation of the flow and heat transfer over the non-isothermal horizontal circular cylinder in cross flow.  Result were compared with that of 

Chao and Fagbenle at zero incidence, (Λ=0), and are found to be in good agreement.  
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